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Dataset size and composition impact the reliability
of performance benchmarks for peptide-MHC
binding predictions
Yohan Kim1, John Sidney1, Søren Buus2, Alessandro Sette1, Morten Nielsen3,4 and Bjoern Peters1*

Abstract

Background: It is important to accurately determine the performance of peptide:MHC binding predictions, as this
enables users to compare and choose between different prediction methods and provides estimates of the
expected error rate. Two common approaches to determine prediction performance are cross-validation, in which
all available data are iteratively split into training and testing data, and the use of blind sets generated separately
from the data used to construct the predictive method. In the present study, we have compared cross-validated
prediction performances generated on our last benchmark dataset from 2009 with prediction performances
generated on data subsequently added to the Immune Epitope Database (IEDB) which served as a blind set.

Results: We found that cross-validated performances systematically overestimated performance on the blind set.
This was found not to be due to the presence of similar peptides in the cross-validation dataset. Rather, we found
that small size and low sequence/affinity diversity of either training or blind datasets were associated with large
differences in cross-validated vs. blind prediction performances. We use these findings to derive quantitative rules
of how large and diverse datasets need to be to provide generalizable performance estimates.

Conclusion: It has long been known that cross-validated prediction performance estimates often overestimate
performance on independently generated blind set data. We here identify and quantify the specific factors contributing
to this effect for MHC-I binding predictions. An increasing number of peptides for which MHC binding affinities are
measured experimentally have been selected based on binding predictions and thus are less diverse than historic
datasets sampling the entire sequence and affinity space, making them more difficult benchmark data sets. This
has to be taken into account when comparing performance metrics between different benchmarks, and when
deriving error estimates for predictions based on benchmark performance.

Keywords: Benchmarking of MHC class I predictors, Epitope prediction, Sequence similarity, Cross-validation

Background
Major Histocompatibility Complex (MHC) molecules
belong to a large family of proteins used by the immune
system to recognize foreign antigens such as pathogens.
In humans, MHCs are called human leukocyte antigens
(HLA). Attached to the cell-surface, MHC molecules
loaded with peptide fragments of intra- or extra-cellular
origin are presented to T-cells for recognition, after which
cell-killing or downstream signaling events are triggered
[1]. Hence, binding of peptides to MHC molecules is a

requirement for T-cell recognition [2,3]. Accordingly, ac-
curate peptide:MHC binding predictions are useful for the
development of reagents, therapeutics and diagnostics for
infectious and autoimmune diseases, allergy and cancer.
Because of the importance of peptide:MHC binding

in determining T-cell epitopes, much effort has been
expended to collect experimentally measured binding
affinity data and make them available to the scientific
community [4-8]. Accompanying the growth of the bind-
ing data, many MHC class I peptide binding predictors
have been reported to date. To compare their predictive
performances, a number of large-scale benchmarking
studies have been carried out. In the case of MHC-I pre-
dictors, high predictive performances with average Areas
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under Receiver Operating Characteristic curves (AROCs)
of ~0.9 from cross-validations have been reported [9,10],
suggesting that the predictive methods have matured.
Despite much progress in the development of predictive

methods for binding of peptides to MHC class I molecules,
a number of important questions remain. First, given that
cross-validated predictive performances are estimates of
‘true’ performances in real world applications, how accurate
are these estimates? Second, what is the role of sequence
similarity in influencing the accuracies of these estimates?
That is, does presence of similar peptides between testing
and training sets lead to inflated predictive performances?
Third, are there additional factors that lead to deviations
between blind and cross-validated performances?
To address these questions, we tested existing predictive

methods against a large set of blind data sets and measured
deviations of cross-validated performances with respect to
those on a blind dataset. We introduced a cross-validation
strategy where sequence similarity between testing and
training data sets is dramatically reduced. Furthermore,
we examined various characteristics of cross-validation
and blind data sets to better understand how they influ-
ence estimates of blind predictive performances.

Results
Assembling a comprehensive set of MHC class I binding
data for cross-validations
To better understand the factors that contribute to ac-
curacy of predictive performances estimated by cross-
validation, we prepared the three binding data sets shown
in Table 1. The binding data came from the Immune
Epitope Database (IEDB) [8], as well as some data from
submissions currently in process from the Buus and
Sette labs. BD2009 and BD2013 are data sets prepared
in years 2009 and 2013, respectively, for re-training of the
predictive tools hosted on the Immune Epitope Database
Analysis Resource (IEDB-AR) [11]. Cross-validated pre-
dictive performances were generated against BD2009.
Compared to BD2009, BD2013 contained about 30% more

data points. The BD2013 data set covered 6 species
(including human, mouse, and macaque), 114 MHC-I
alleles, 257 (MHC, length) data sets with 685 affinity
measurements on average, and a total of 176,161 measure-
ments. BD2013 is the largest binding affinity measurement
data set assembled to date for MHC class I peptide
binding.
To prepare independent data sets against which to esti-

mate ‘true’ predictive accuracy, we compiled a blind data
set (i.e. ‘Blind’). Against this data set, all blind predictions
used in this study were generated with the predictors
trained on BD2009. The Blind set was prepared by sub-
tracting BD2009 from BD2013 and removing ‘similar’
peptides with respect to BD2009. Two peptides were
considered ‘similar’ if they shared at least 80% sequence
identity and were of same lengths. In the table, only
those data sets for which (MHC, length) combinations
were shared between BD2009 and Blind and that had at
least 50 data points are reported. The Blind data set
contained binding data associated with 53 alleles, 90
(MHC, length) data sets, and 29,160 measurements. All
of the benchmark data sets mentioned are available at
the IEDB-AR benchmark datasets website [12].

Cross-validations tend to over-estimate blind predictive
performances
In a typical run of cross-validation, a data set is randomly
partitioned into N subsets, and one subset is held out for
making predictions using a predictor trained on the
remaining N - 1 subsets. This type of cross-validation has
been used widely for benchmarking peptide:MHC binding
predictors [9,10,13]. To distinguish it from other types of
cross-validations that will be introduced later, we will call
it cv_rnd from here on, indicating a random partitioning
for cross-validation.
In terms of absolute predictive performances against the

cv_rnd cross-validation data sets, NetMHCpan performed
better than either SMMPMBEC or NetMHC, while
SMMPMBEC and NetMHC performed similarly (similar
rank of the three methods was found for the other two
data cv data sets, for details see in Additional file 1:
Table S1 ). Against the blind data sets, however,
NetMHCpan and NetMHC performed similarly while
SMMPMBEC performed worse (Additional file 1: Table S1).
This is in agreement with previous performance bench-
marks [9,14,15].
In Figure 1, standard errors of means of differences in

predictive performances estimated using cv_rnd and per-
formances measured on the blind data sets are shown
for the three predictive methods. The means of all three
distributions of prediction differences are above zero,
indicating that the cv_rnd cross-validation strategy
over-estimates blind predictive performances for all
three methods. For both SMMPMBEC and NetMHCpan,

Table 1 Binding data statistics

BD2009+ BD2013 Blind++

Alleles 79 114 53

Data sets 170 257 90

Data set size

Average 792 685 324

Min 50 50 50

Max 6,961 8,826 1,865

Total data points 134,645 176,161 29,169
+All cross-validations were carried out using BD2009.
++Blind was generated by subtracting BD2009 from BD2013. Against Blind, all
blind predictions were made using the predictors trained on BD2009.
Each (MHC, length) combination is associated with a data set.
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but not NetMHC, the over-estimation is statistically sig-
nificant (t-test, two-sided), as shown in column ‘P-values:
one sample’ in (see Additional file 1: Table S2) for the
cv_rnd cross-validation strategy.

Reducing sequence similarity in cross-validation data sets
does not mitigate over-estimation of blind predictive
performances
The observed over-estimations had a number of possible
explanations. One previously provided explanation [13,16]
was that sequence similarity shared between training and
testing data sets during cross-validation inflated predictive
performances, because similar peptides are easier to pre-
dict than completely novel ones. To test this hypothesis,
we utilized two cross-validation strategies that reduce
sequence similarity: cv_sr and cv_gs. The cv_sr (cross-
validation, similarity reduced) strategy reduced sequence
similarity by removing peptides so that there were no
similar peptides in the data sets using a sequence thresh-
old of 80%. Once similar peptides were removed, random
partitioning was done as for cv_rnd. In the case of the
cv_gs strategy (cross-validation, group similarity), rather
than removing all similar peptides, we only required that
there were no similar peptides between the paired training
and testing sets in cross-validation partitions. Hence, in
comparison to cv_sr, cv_gs kept many more peptides, but
distributed them differently in the cross-validation parti-
tions. Details of these implementations are provided in the
Methods section.

As shown in Additional file 1: Table S2, differences in
AROCs between cross-validated and blind predictive
performances for the cross-validation strategies cv_sr and
cv_gs show means that are closer to zero than cv_rnd for
both of these cross-validation setups. As shown in column
‘P-values: two sample’, this shift to smaller means is sta-
tistically significant for SMMPMBEC and NetMHCpan,
but not NetMHC. However, as shown in column ‘P-
values: two-sample, absolute value’ for all three methods,
using either cv_sr or cv_gs strategy did not lead to sig-
nificantly more accurate estimates of blind predictive
performances than cv_rnd (paired, one-sided, t-test).
Scatter plots of deviations shown in Figure 2 confirm that
cv_rnd and cv_gs perform similarly. For the remaining sec-
tions, the cross-validation strategy cv_gs will be used
throughout.

Data set size, evenness of peptide sequence space
coverage, and range of predicted affinities can explain
over-estimation of cross-validated predictive performance
To better understand why predictive performances esti-
mated using cross-validation deviated from those of blind,
we defined two classes of deviations for each method, as
shown in Figure 3. In the figure, a band around the diag-
onal differentiates cross-validated predictions with small
deviations (black) from those with large deviations (red),
using an arbitrary threshold defined by the mean of devia-
tions (i.e. |cv_gs – blind|) for SMMPMBEC. Using the same
threshold for SMMPMBEC, NetMHC, and NetMHCpan,
33, 26 and 15 data points were considered ‘large’ devia-
tions, respectively.
We also looked at scatter plots of predicted versus

measured binding affinities for data sets with large devi-
ations. The scatter plots revealed that large deviations
were associated with blind data sets where the ranges of
predicted affinities were narrow with respect to those of
cross-validated ones, or measured affinities for peptides
were concentrated in the region bordering a cutoff value
for binders. Additional file 1: Figure S1 is an example of
the latter case for H-2 Db, where most of the peptides
had measured affinities between 100 and 1000 nM, while
those from the cross-validation data set were more
broadly sampled (see Additional file 1).
Motivated by these observations, we characterized

cross-validation and blind data sets using a number of
features. Briefly, the features captured data set sizes,
evenness of peptide sequence space coverage, range of
predicted/measured affinities, and overlap of these ranges
between cross-validation and blind data sets. The features
used are listed in Table 2. Details of their calculations are
provided in the Methods section.
Table 2 lists features, and their statistical significances,

used for discriminating cross-validated predictive per-
formances with large deviations from those with small
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Figure 1 Cross-validations tend to over-estimate predictive
performances against blind data sets. For each predictive method,
a mean of its distribution of differences in performances between
cv_rnd and blind (i.e. cv_rnd - blind) and a standard error of the
mean are shown. Hence, a positive mean indicates over-estimation
in performance by cv_rnd. Predictive performances are reported as
AROC values (Area under Receiver Operating Characteristics curve).
Scores of 0.5 and 1.0 indicate a random pattern and perfect
prediction, respectively.
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deviations, using the threshold introduced above. As
shown, the features that showed the most significant
discrimination were largely the same for all three
methods. The size of the cross-validation and blind
data sets (i.e. log_size_cv and log_size_bl) were among
the strongest, and they inversely correlated with devia-
tions. The next strongest features were evenness of se-
quence space coverage of blind and cross-validation
data sets (i.e. entss_bl and entss_cv, respectively), and
they also inversely correlated with deviations. The next
strongest feature was the ‘spread’ of predicted affinities
for the blind data sets, which also inversely correlated
with deviations. For NetMHCpan, entss_bl was the
strongest feature in discriminating the two classes of
deviations, instead of data size. This difference was
probably due to the fact that this pan method used data
from different MHC alleles at the same time and there-
fore was less impacted by a low number of data points
in the specific MHC allele for which predictions were
made. Scatter plots of deviations versus log_size_cv and
entss_bl are shown in (see Additional file 1: Figure S2).

Logistic regression models of observed deviations for
cross-validated predictive performances improve accuracy
of predicting biased benchmark data sets
The results shown above suggested that certain features
of the training and blind datasets could be used to identify
when it is likely to observe a large difference between
cross-validated and blind prediction performances. We
therefore set out,to build models to quantify this likeli-
hood using logistic regression [17], given a specific data
set. Logistic regression was chosen because we wanted
to model probabilities of the two classes of deviations
defined earlier (i.e. large vs small) as a function of the
features considered here. For each (MHC, length) com-
bination, a logistic regression model returned a probability
of large deviation based on the features for the data set,
and its reference class label was based on the deviation
threshold used in Figure 3. Predictive performances of the
logistic regression models in AROCs were measured using
leave one out cross-validations (LOOCV), where ‘test-
ing’ set has a size of 1 while ‘training’ set the size of the
remaining data.

Figure 2 Comparison of cross-validation strategies in terms of their differences in predictive performances with respect to those of
blind. For each strategy, its blinded performances were subtracted from those of cross-validated: cv - blind. Hence, positive values indicate
over-estimation of blind predictive performances.

Figure 3 Two classes of deviations of predictive performances estimated with cross-validation with respect to those of blind.
Predictive performances are in AROCs for the three predictive methods. The width of the band is set at values +/- mean of absolute
differences between blind and cv_gs of SMMPMBEC: mean(abs(cv_gs - blind)). Data points classified as ‘large deviations’ are highlighted
in red.
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We systematically tested how well combinations of two
features of the training or blind datasets could predict the
likelihood of having a large deviation between cross-
validated and predicted performances (see in Additional
file 1: Table S3, S4 and S5). The two features of the train-
ing set with the highest predictive power were size of the
dataset (log_size_cv) and entropy of its measured binding
affinities (ent_meas_cv). The top row of Figure 4 shows
the predictive power of a model using these features of
the training set alone for SMMPMBEC, NetMHC and
NetMHCpan methods which achieved AROC values of
0.806, 0.741 and 0.683 respectively. The predictive power
of the model for NetMHCpan was likely lower as add-
itional training data was used beyond the data available
for the particular allele. After repeating the same analysis
for features of the blind set, we found that a model using
sequence space coverage (entss_bl) and entropy of the
predicted binding affinities (ent_pred_bl) had the high-
est discriminatory power, achieving AROC values of
0.782, 0.779 and 0.732 for the three methods. This dem-
onstrates that features of the blind set and features of
the training set independently impacted the likelihood
of having mismatching performance estimates between
cross-validation and blind prediction performances.
Finally, we built another model combining the two

models described above. In this combined model, a prob-
ability of large deviation was calculated by taking a higher
probability returned by the two models. The bottom row
of Figure 4 shows results of LOOCV with AROC values of
0.814, 0.804 and 0.807, respectively. The combined model
showed a much higher average AROC of 0.808 than the
model using features of the training set (average AROC=
0.743) or blind set (average AROC= 0.764) alone, further
illustrating that both training set and blind dataset need to
be of adequate size and representative of the problem

space in order to give consistent results in benchmarking
performance.

Discussion
To better understand how well the accuracy of peptide:
MHC class I binding predictive methods can be estimated
for practical applications, we utilized a large blind data set
to measure the extent of deviation of cross-validated pre-
dicted performance with respect to those generated from
blinded approaches. We found that cross-validations tend
to over-estimate blinded prediction performance. Redu-
cing sequence similarity between training and testing sets
during cross-validation had only a marginal role in miti-
gating the over-estimations. Instead, a multitude of factors
contributed to deviations (and over-estimations). Namely,
large deviations are due to small training data sets, un-
evenness of sequence coverage of either training or blind
data sets, and narrowly ranged predicted affinities for
blind data sets.
Results from the logistic regression modeling showed

that features of both cross-validation and blind data sets
contributed to the deviations. Our results suggest that
predictors trained with sufficiently large data sets that
evenly cover sequence and affinity space are ‘good’, in
the sense that it is less likely that they have ‘blind spots’
and will perform great on one test set but poorly on
another. Based on these results, we incorporated the
accuracy assessment given by the training set classifier
into our benchmarking results to indicate those datasets
for which the cross-validated performance measure may
not be an accurate estimate (see Additional file 2).
Our results indicate that, at least for MHC-I predictors,

cross-validations do give accurate estimates of ‘true’ pre-
dictive performances, if sizes of training data are sufficiently
large and peptide sequence space has been sampled evenly.
There are additional reasons to prefer cross-validation over
blind sets: For one, it takes a long time until a sufficiently
large blind dataset can be assembled to perform reliable
prediction assessments. Moreover, there is a fundamental
problem with blind sets being generated at least as they are
submitted to the IEDB: Given the increased use of MHC
binding predictions in practical applications, binding data is
increasingly generated on such pre-selected peptides that
will have a decreased coverage of the sequence and affinity
space. As we have shown here, such blind sets are intrinsic-
ally harder to predict. Thus, the seeming drop in perform-
ance from the cross-validated predictions on the IEDB
2009 dataset compared to predictions of the data newly
added into the IEDB since then is likely a reflection of the
more difficult nature of these datasets.
Our study could be further improved in several ways.

First, by repeating cross-validation runs with different
data partitions and averaging the performance over differ-
ent runs, a more solid estimate of performance could have

Table 2 Statistical significances of features of
cross-validation and blind data sets in discriminating
large deviations from small

Features SMMPMBEC NetMHC NetMHCpan

log_size_cv 7.7e-07 2.5e-04 2.5e-02

log_size_bl 2.9e-05 3.6e-03 1.2e-02

entss_cv 1.1e-04 1.7e-03 2.0e-02

entss_bl 3.4e-05 3.9e-04 5.1e-03

ent_meas_cv 1.7e-01 5.5e-01 4.6e-01

ent_meas_bl 4.6e-01 5.4e-01 8.5e-01

ent_pred_cv 1.5e-01 2.1e-01 2.0e-01

ent_pred_bl 4.8e-03 6.4e-02 1.1e-02

prbol_meas 3.5e-01 9.9e-02 3.1e-01

prbol_pred 7.8e-03 3.7e-02 2.8e-02

Here, deviation = |cv_gs - blind|, where blind and cv_gs correspond to
predictive performances in AROCs. Significant features (t-test; two-tailed at
0.05 cutoff) are italicized. See Methods for definitions of the features.
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been gathered. We did not do that in order to be directly
comparable by previous benchmarks published from our
group. In addition, the AROC as a performance measure
is prone to generate less robust results for data sets with
few numbers of binders, which is the case for several
of the datasets in this study. So some of the variability
between cross-validated and blind performance that
we observed for datasets with low numbers of binders
might be less pronounced if a different performance
metric was used. However, the number of binders per
dataset was one metric that was evaluated for its ability
to identify datasets with highly divergent blind vs.

cross-validated prediction performance, and the total
number of peptides in each set in general performed
better, so this issue does not seem to be a dominant
concern. With these considerations, we stuck to the AROC
measure to evaluate performances, also to be directly
comparable to our previous benchmarks.
Others have also looked into estimating reliability of

given predictions. Recently, confidence intervals of indi-
vidual predictions were estimated for peptide-MHC bind-
ing based on training data [18]. We expect that such
confidence interval estimations will be complementary to
our findings.

Figure 4 Distributions of observed deviations for two predicted classes of deviations: small vs. large. Leave One Out Cross-Validation
(LOOCV) results were separated into two groups (i.e. ‘good’ and ‘bad’), based on a probability cutoff of 0.2. First and second rows used logistic
regression models combining features indicated as row labels. Third row uses the ‘max’ approach to combine models used in the top two rows.
Overlaid on top of each distribution, lower, middle, and upper line segments represent 25th, median, and 75th quartiles, respectively.
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Conclusion
Using the largest ever assembled set of training and blind
data sets for peptide:MHC class I binding, we determined
the extent to which cross-validated predictive perfor-
mances deviate from those based on blind validation.
Removing sequences that shared 80% or greater sequence
identity between training and testing sets during cross-
validations had a marginal role in influencing the extent of
deviations. Instead, we found that data set size and the
evenness of coverage of the sequence space can explain
most of the deviations observed for both the cross-
validation and blind data set approaches. Our results iden-
tify quantitative features that will facilitate more accurate
assessment of the performance of peptide-MHC binding
predictors.

Methods
Predictive methods for binding of peptides to MHC
class I molecules
Three different types of predictive methods were tested in
this study. The first method was SMMPMBEC [14], which
is a linear regression based method and returns predictive
models as position specific scoring matrices. The second
method was NetMHC [19,20], which uses neural-networks
and thus may be able to capture non-linear interactions
among residues. The third method was NetMHCpan
[21,22], which is also based on neural-networks. However,
NetMHCpan is distinguished from NetMHC in that it is a
‘pan’ method; that is, it leverages binding data across
different MHC molecules to make predictions, even for
those MHCs with no previous experimental character-
izations. A number of papers reporting their predictive
performances have been published [9,10,23,24].

Cross-validation strategies compared
Cross-validation is a technique used to estimate accuracy
of a predictive method on a single data set. This is done
by first partitioning data into N subsets, labeling one
subset as a ‘testing set’ and the remaining N-1 subsets
are merged to form a ‘training set’. A prediction method
is given the training set as an input and is used to make
predictions against the testing set. This process is repeated
as the testing set is rotated over remaining subsets. In the
end, a single predictive performance of the method is cal-
culated for the combined set of predictions made against
the ‘testing’ sets.
For performance measures, Areas under Receiver

Operating Characteristic curves (AROCs) [25] and Pearson’s
correlation coefficients were used. In the case of AROCs,
values range from 0.5 to 1.0, where 0.5 indicates random,
and 1.0 perfect, predictions. An AROC value can be inter-
preted as the probability of distinguishing a true positive
from a false positive. For the calculation of AROCs, pep-
tides were classified into binders and non-binders at a

cutoff value of 500 nM. This affinity threshold has been
found to be associated with the vast majority of known
T-cell epitopes [2,26].
Different types of cross-validation strategies are possible,

characterized by types of data partitioning. In this study,
three different cross-validation strategies were compared.
The first strategy was used in benchmarks reported in the
literature, where random partitioning of data and 5-fold
cross-validation were used: cv_rnd. The two remaining
strategies involved removal of similar peptides in the data
sets. One such approach, denominated ‘similarity-reduced’,
has earlier been used to benchmark MHC class II predict-
ive methods in [13]. The similarity-reduced approach
deterministically removes similar peptides. This resulted
in the cross-validation strategy, ‘cv_sr’ . Another strategy is
‘cv_gs’, where rather than removing similar peptides en-
tirely, similarity is removed only between testing and
training partitions by grouping similar peptides in the
same partition. An implementation similar to ‘cv_gs’ was
used for benchmarking MHC-II predictive methods in
[27]. Details of the two cross-validation strategies are pro-
vided in the following sections.

Preparation of similarity reduced cross-validation data
sets: cv_sr
To generate a similarity-reduced cross-validation data set
cv_sr for each (MHC, length) specific data set, similar pep-
tides were removed and data were randomly partitioned
as was done for the cv_rnd strategy. For the removal of
similar peptides, a Hobohm 1 like algorithm was used
[13]. Specifically, for a given list of peptides, the peptides
were sorted, from low to high, as a function of the number
of ‘similar’ peptides each has. Here, two peptides were
considered ‘similar’ if they shared at least 80% sequence
identity and were of identical length. Starting with the
peptide with the fewest neighbors (fewest number of simi-
lar peptides), the peptide was added to an initially empty
set ‘sr’ if it was not similar to any peptide in the ‘sr’ set.
This step was repeated until the sorted peptide set was
exhausted. This approach was applied separately to
binders and non-binders where binders are those with
measured affinities < 500 nM and non-binders are the
remaining peptides. The two sets were then combined
to yield the final ‘sr’ set.

Preparation of cross-validation data sets with similar
peptides grouped: cv_gs
Rather than removing all ‘similar’ peptides, it is also
possible to remove similarity only between testing and
training sets, by grouping similar peptides in the same
cross-validation partition. We had two additional re-
quirements. Namely, we required that peptides were
distributed across the 5 partitions as evenly as possible.
Lastly, to accommodate ‘pan’ predictive methods such
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as NetMHCpan that use data across alleles, we required
that a peptide be assigned to the same cross-validation
partition across alleles. This ensures that NetMHCpan
does not gain an advantage by having similar peptides
shared between testing and training sets from different
alleles.
This was implemented as follows. First, peptides from

the entire binding data set were clustered based on the
definition of ‘similarity’ stated earlier. Specifically, peptides
were represented as an undirected graph G, where nodes
represented peptides and an edge was placed between two
nodes if corresponding peptides were ‘similar’ (i.e. they
shared at least 80% sequence identity and of same length).
This resulted in a set of mutually exclusive subgraphs
where any two nodes in each subgraph were ‘connected’
(i.e. there was a path connecting the two nodes). Each
subgraph then corresponded to a cluster. Since clustering
was done on all available peptides, a peptide may be asso-
ciated with binding affinities measured against multiple
MHC molecules.
Second, as the algorithm processed clusters from largest

to smallest, it assigned one of 5 cross-validation partition
indices to each cluster of peptides. For each cluster, the
partition index was chosen such that peptides were dis-
tributed evenly among the 5 partitions. The selection of
the partition index was achieved by identifying the MHC
with the most number of measurements in the cluster and
choosing the MHC’s partition index with the least number
of peptides associated.

Features of cross-validation and blind data sets
Cross-validation and blind data sets were characterized
using a number of features and the following sections
provide details of how the features were defined.

Evenness of peptide sequence space coverage:
entss_cv and entss_bl
For a set of peptide sequences, the degree of ‘evenness’ of
sequence space coverage was measured using an entropy
function. A discrete probability distribution function was
constructed for each peptide position: p(xi). The function
describes how often a given amino acid, x, was found
at a specific position, i. For each position, its entropy
is defined as an expectation of the information content,
E[log(1/p(xi))] = -Σp(xi)log[p(xi)] [28]. Entropies over the
positions were then averaged. Higher values indicate
greater degree of ‘evenness’. This measure was calculated
for both cross-validation and blind data sets, resulting in
features entss_cv and entss_bl, respectively. We considered
using Kullback-Leibler divergence, which normalizes for
an expected frequency of amino acids, but decided against
it as it is not clear what background distribution should be
considered here. MHC binding predictions are applied to
peptides of any organism and also to artificial sequences

including scans of all available amino acids; thus, we here
defined entropy in such a way that all amino acids are
treated equally.

Range of binding affinities: ent_meas_cv, ent_meas_bl,
ent_pred_cv, and ent_pred_bl
To determine the range of affinities observed for either
measured or predicted data, the same entropy function
used earlier was also implemented here. A probability
distribution function was constructed over binned affin-
ities, rather than 20 amino acid types as was done earlier.
The binning was done for log10 transformed IC50 values,
ranging from 0 to 5, with fixed bin size of 1. This measure
was calculated for measured affinities of cross-validation
and blind data sets (i.e. ent_meas_cv and ent_meas_bl,
respectively) as well as for predicted affinities (i.e.
ent_pred_cv and ent_pred_bl, respectively).

Overlap of two ranges of affinities: prbol_meas and
prbol_pred
To measure an overlap of ranges of two sets of affinities,
the following measure was defined. Given two discrete
probability distributions of log-transformed affinities
defined above, px(i) and py(i), a measure of their over-
lap is a sum of min(px(i), py(i)), where i indexes the
bins. A higher value indicates greater overlap. The
overlaps were calculated between cross-validated and
blind data sets for either measured or predicted affinities,
corresponding to prbol_meas and prbol_pred, respectively.

Additional files

Additional file 1: Figure S1. Scatter plots of measured and predicted
affinities for cross-validated and blind predictions for the 9-mer data set of
H-2 Db. Vertical and horizontal lines indicate cutoffs at the 500 nM threshold
that distinguishes binders from non-binders. Figure S2. Correlations of
deviation of cross-validated prediction with either data set size (i.e. log_size_cv)
or entropy of sequence space (i.e. entss_bl). Here, ‘deviation’ is defined as ‘|
cv_gs – blind|’. Red lines represent the class boundary used for the logistic
regression modeling. Table S1. Average predictive performances of the three
1 methods against cv_rnd, cv_sr, cv_gs, and blind benchmark data sets as
Areas under ROC curves. For each benchmark data type, highest performance
is indicated with bold font. Table S2. Mean of differences in AROCs between
predictive performances generated with cross-validations and those against
blind data sets. Here, a ‘difference’ is defined as (cv – blind). Hence, positive
values indicate over-estimations. In column ‘P-values: one sample’, statistical
significances of over-estimations are shown (one-sided t-test). In column
‘P-values: two sample’, significances of differences in means with respect to
cv_rnd for the two cross-validation strategies are shown (paired, one-sided
t-tests). In column ‘P-values: two sample, absolute value’, statistical significances
of improvements in estimations of blind predictive performances of either
cv_sr or cv_gs with respect to cv_rnd were calculated by comparing their
absolute differences (paired, one-sided t-tests). Table S3. Leave one out
cross-validation predictive performances for each logistic regression model
using a pair of features for SMMPMBEC. Performances are in AROCs. Table S4.
Leave one out cross-validation predictive performances for each logistic
regression model using a pair of features for NetMHC. Performances are
in AROCs. Table S5. Leave one out cross-validation predictive performances
for each logistic regression model using a pair of features for NetMHCpan.
Performances are in AROCs.
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Additional file 2: A compressed file containing all predictive
performances as Areas under ROC curves for the three methods. For
each method, performances were measured against the four benchmark
data types: cv_rnd, cv_sr, cv_gs, and blind. Also included are probabilities
of ‘large’ deviations (i.e. |cv_gs – blind|) returned by logistic regression
models.
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