78 research outputs found

    Significance of umbilical artery doppler velocimetry in the perinatal outcome of growth restricted fetuses

    Get PDF
    Background: The objectives of the study are to determine the relationship between the umbilical artery Doppler and perinatal outcome in growth restricted foetuses and to compare the outcome with those of normal foetuses.Methods: A prospective observational study in which subjects were divided into two groups, pregnancies affected with intrauterine growth restriction (IUGR) and pregnancies with normal fetuses. Both the groups were followed with Doppler velocimetry of umbilical artery after 28 weeks till delivery. The perinatal outcome of both the groups with normal and abnormal umbilical artery Doppler (reduced/ absent/ reversed end – diastolic flow) were analysed with Chi-square test and student t - test using SPSS software version 15.0.Results: Umbilical artery Doppler velocimetry showed significant abnormality in growth restricted foetuses in comparison to normal foetuses. There was significant increase in the delivery of IUGR foetuses <37 weeks gestation(p<0.05). There was a significant increase in operative deliveries in both the groups with abnormal umbilical artery Doppler. A significant rise in adverse perinatal outcomes, Apgar <7 at 5 min and low birth weight in IUGR foetuses in comparison to normal foetuses (p<0.05).Conclusions: There is a strict correlation between abnormal umbilical artery Doppler velocimetry and an increased incidence of perinatal complications in growth restricted foetuses compared to normal foetuses. Hence, umbilical artery Doppler velocimetry should be used in all patients with fetal growth restriction, to identify impending hypoxia, to optimise the time of delivery and to optimise the perinatal outcome in these patients

    Existence of nonoscillatory solutions to third order neutral type difference equations with delay and advanced arguments

    Get PDF
    summary:In this paper, we present several sufficient conditions for the existence of nonoscillatory solutions to the following third order neutral type difference equation Δ3(xn+anxn−l+bnxn+m)+pnxn−k−qnxn+r=0,n≥n0 \Delta ^3(x_n+a_n x_{n-l} +b_n x_{n+m})+p_n x_{n-k} - q_n x_{n+r}=0,\quad n\geq n_0 via Banach contraction principle. Examples are provided to illustrate the main results. The results obtained in this paper extend and complement some of the existing results

    The effect of ionic aggregates on the transport of charged species in lithium electrolyte solutions

    Get PDF
    In this investigation we focus on the problem of modelling the transport of the charged species (lithium ions) in electrolyte solutions with moderate and high salt concentrations (0.1M to &gt;2M), and consider the Nernst-Planck equation as a model of such processes. First, using a combination of magnetic resonance imaging (MRI) and inverse modelling (IM) we demonstrate that at higher concentrations the Nernst- Planck equation requires negative transference numbers in order to accurately describe the concentration profiles obtained from experiments. The need for such a physically inconsistent constitutive relation indicates the loss of validity of the Nernst-Planck equation as a model for this process. Next we consider the formation of ion pairs and clusters as a possible effect responsible for the appearance of negative transference numbers and derive an extended version of the Nernst-Planck system which accounts for these additional species. However, a careful analysis of this model reveals that incorporation of ion-pairing effects into the modelling will not change the transference numbers inferred from the experimental data via inverse modelling. This demonstrates that physical effects other than formation of ion pairs and clusters must be incorporated into the Nernst-Planck model in order for it to correctly describe ion transport at higher salt concentrations. One prime candidate for such effects is the motion of the reaction surface resulting from dendrite growth

    Towards Increased Recovery of Critical Raw Materials from WEEE– evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes

    Get PDF
    Increasing recovery of critical raw materials (CRMs) from waste electrical and electronic equipment (WEEE) is a strategic priority to mitigate supply risks. Today, CRM recovery rates are generally low, with increases requiring new recovery processes and interface optimisation with pre-processing to ensure appropriate material flows for efficient recovery are generated. Here, results from an industrial trial to increase CRM recovery from WEEE are presented to inform development of pre-processing strategies which generate such material flows. Au, Ag, Co, Ga, Mg, Nb, Ru, Pd, Ir, Y, Nd, Sb, Ta and W are identified with XRF in components of a range of WEEE samples including within individual printed circuit board (PCB) components. CRM distribution in PCBs is mapped by visual inspection with reference to this data. Cost-effective methods to disassemble WEEE; isolate CRM bearing components, and upgrade/concentrate CRMs are evaluated for industrial adoption. A guillotine is found most suitable for LCD disassembly and separation of Au edge-contacts from PCBs, while cryocracking is best for isolation of internal components of digital media devices. Thermal PCB disassembly with a solder bath for simultaneous SMD removal and subsequent sieving to sort SMDs thereby concentrating CRMs for recovery is a promising approach. Microwave ashing of PCBs to concentrate CRMs is promising although off-gas treatment would be required. Recovery potential of identified CRMs from material streams generated is found to be poor due to lack of suitable recovery infrastructure except for precious and platinum group metals in PCBs, but available pyrometallurgical recovery permanently dissipates other CRMs present

    Leaching and Selective Recovery of Cu from Printed Circuit Boards

    No full text
    Printed circuit boards (PCBs), a typical end-of-life electronic waste, were collected from an E-waste recycling company located in the Netherlands. Cu and precious metal concentration analyses of the powdered PCBs confirm that the PCBs are multimetallic in nature, rich, but contain high concentrations of Cu, Au, Ag, Pd, and Pt. Ferric sulfate concentration (100 mM), agitation speed (300 rpm), temperature (20 &deg;C), and solid-to-liquid ratio (10 g&middot;L&minus;1) were found to be the optimum conditions for the maximum leaching of Cu from PCBs. The ferric sulfate leachates were further examined for selective recovery of Cu as copper sulfides. The important process variables of sulfide precipitation, such as lixiviant concentration and sulfide dosage were investigated and optimized 100 ppm of ferric sulfate and (copper:sulfide) 1:3 molar ratio, respectively. Over 95% of the dissolved Cu (from the multimetallic leachates) was selectively precipitated as copper sulfide under optimum conditions. The characterization of the copper sulfide precipitates by SEM-EDS analyses showed that the precipitates mainly consist of Cu and S. PCBs can thus be seen as a potential secondary resource for copper

    Boues métallurgiques, bio/lixiviation et récupération des métaux lourds (Zn, Cu)

    No full text
    This research was carried out in order to develop a technology to demonstrate the metallurgical residues as a potential secondary source for heavy metals (Cu and Zn). Three different (based on their age of generation and deposition) zinc leach residues (ZLR1, ZLR2 & ZLR3) and zinc purification residue (ZPR) were collected from a Zn-metallurgical industry located in Brazil. The characterization of ZLRs and ZPR were examined for their mineralogical, physico-chemical, bulk chemical features. Fractionation of heavy metals and liquid-solid partitioning with respect to pH were also determined. Geo-chemical modelling was done to understand the mechanisms affecting the mineral solubilities of these residues. Following the above, the residues were subjected to (bio) leachability tests to optimize the maximal extraction of heavy metals. Later, the recovery of Zn (ZLRs) and Cu (ZPR) from the polymetallic acidic leachates were investigated. Finally, hydrometallurgical flow charts for the selective recovery of Cu and Zn were proposed. The results reveal that the ZLRs contain significant concentration of Zn (2.5% to 5%), Pb (1.7% to 2.3%) and metals such as Mn, Cu, and Al in detectable fractions. The ZPRs contain high concentration of Cu (47%), Zn (28%), Cd (9%) and Pb (5%). Fractionation with acetic and nitric acid suggest that both the leach and purification residues are hazardous wastes, releasing higher concentration of Pb and Cd into the environment, than the permissible concentration suggested by U.S. EPA. Leaching of metals from the residues is highly pH dependent. Heavy metals leaching (Zn & Cu) is high at low pH and the release of metals was decreased with increase in pH. Sulfated and carbonated mineral phases were predicted to be the solubility controlling minerals. The leaching of Zn from ZLRs was highly influenced by temperature and acid concentration. The results of the optimization of leaching parameters state that more than 92%, 85% and 70% of zinc can be extracted from ZLR1, ZLR2 and ZLR3 by H2SO4 (1.5 M) leaching (at 80 °C for 6 hours with a pulp density 2%, while the agitation speed was maintained 250 rpm). The sulfuric acid leaching of ZLRs follows the shrinking core diffusion model. The activation energy required to leach zinc from the ZLR1, ZLR2 and ZLR were estimated to be 2.24 Kcal/mol, 6.63 Kcal/mol and 11.7 Kcal/mol respectively, by Arrhenius equation. Order of the reaction with respect to the sulfuric acid concentration was also determined as 0.2, 0.56, and 0.87 for ZLR1, ZLR2 and ZLR3, respectively. Selective precipitation of Zn (as sphalerite) from the leachates was achieved by the combination of hydroxide and sulfide precipitation. Biohydrometallurgy is also as effective as the chemical hydrometallurgy for the selective Zn recovery from the ZLRs. Cu leaching from ZPR was highly influenced by solid to liquid phase ratio and agitation speed, suggesting that the mass transfer depends on the diffusion. More than, more than 50%, 70% and 60% of the total Cd, Cu and Zn can be leached from ZPR by 1M H2SO4 with 2% pulp density continuously shaken at 450 rpm at 80 °C. Covellite was selectively recovered from the acid multi-metallic (Cd, Cu & Zn) leachates were investigated by optimizing the initial pH and Cu to sulfide ratio. In conclusion, these hazardous metallurgical residues can be seen as potential alternative resource for Zn and Cu. Not only the capital costs and environmental issues associated with the storage/disposal of these ZLRs & ZPR but also the gradual depletion of high grade sulfidic ores (for Zn and Cu) can be addressed. The study also leaves a perspective of investigating the leached ZLR & ZPR, for the selective leaching and recovery of PbCe travail de recherche a été réalisé dans le but de développer une technologie pour démontrer le potentiel des résidus métallurgiques comme une source secondaire de métaux lourds (Cu et Zn). Trois résidus de lixiviation de zinc différents (en fonction de leur âge de génération et de dépôt) (ZLR1, ZLR2 & ZLR3) et des résidus d'épuration de zinc (ZPR) ont été recueillis sur un site industriel de la métallurgie du zinc localisé au Brésil. Les échantillons de ZLRs et ZPR ont été analysé pour déterminer leurs caractéristiques minéralogiques et physico-chimiques. Le fractionnement de métaux lourds par extraction séquentielle et leur mobilité en fonction du pH ont été déterminés. La modélisation géochimique a été réalisée pour déterminer les mécanismes qui affectent la mobilisation des métaux lourds à partir de ces résidus. Ensuite, les résidus ont été soumis à des tests de lixiviation afin d’optimiser l'extraction de métaux lourds. La récupération sélective de métaux à partir des lixiviats acides a été obtenue par précipitation de sulfure métallique (MSP). Enfin, des séquences de procédés pour la récupération sélective de Cu et Zn ont été proposées. Les résultats révèlent que ZLRs contient une concentration importante de Zn (2,5% à 5%), Pb (1,7% à 2,3%) et des métaux tels que Mn, Cu, Al dans des fractions détectables. Les ZPRs contiennent une forte concentration de Cu (47%), Zn (28%), Cd (9%) et Pb (5%). Le fractionnement à l’aide d’acide acétique ou d’acide nitrique suggère que les résidus de lixiviation et de purification sont des déchets dangereux, qui libèrent une concentration de plomb et de cadmium dans l'environnement supérieure à la concentration admissible proposée par l’USEPA. La lixiviation des métaux à partir des résidus est très dépendante du pH. La lixiviation des métaux lourds (Zn & Cu) est élevée à pH acide et la libération des métaux diminue avec l'augmentation du pH. Les phases minérales sulfatées et carbonatées ont été identifiées comme celles contrôlant la solubilité des minéraux. La lixiviation de Zn à partir de ZLRs est fortement influencée par la température et la concentration en acide. La cinétique de lixiviation des ZLRs indique que plus de 92%, 85% et 70% du zinc peut être extrait de ZLR1, ZLR2 et ZLR3 par lixiviation à l’aide de H2SO4 (1,5 M). Les cinétiques de lixiviation de ZLRs avec l’acide sulfurique suivent le modèle cinétique à cœur rétrécissant. L'énergie d'activation nécessaire pour lixivier le zinc contenu dans ZLR1, ZLR2 et ZLR a été estimées à 2,24 kcal / mol, 6,63 kcal / mol et 11,7 kcal / mol, respectivement, à l’aide de l'équation d'Arrhenius. Les ordres de la réaction par rapport à la concentration en acide sulfurique ont également été déterminés comme étant respectivement de 0,2, 0,56, et 0,87 pour ZLR1, ZLR2 et ZLR3. La précipitation sélective du zinc (comme sphalérite) à partir des lixiviats a été obtenue par la combinaison d'une co-précipitation avec de l'hydroxyde et du sulfure. La lixiviation de Cu à partir de ZPR a été fortement influencée par le rapport solide-liquide et la vitesse d'agitation, ce qui suggère que le transfert de masse est contrôlé par la diffusion. Plus de 50%, 70% et 60% de Cd, Cu et Zn peuvent être lessivés à partir de ZPR en utilisant de l’H2SO4 1M . La covellite a été récupéré sélectivement à partir des lixiviats acides multi-métalliques (Cd, Cu et Zn) et les lixiviats ont été étudiés en optimisant le pH initial et le rapport massique Cuivre-sulfure. En conclusion, ces résidus métallurgiques dangereux peuvent être considérés comme une ressource alternative potentielle de Zn et Cu. Non seulement les coûts d'investissement et les questions environnementales liées au stockage / élimination de ces ZLRs & ZPR mais aussi à l'épuisement progressif des minerais sulfurés de haute qualité (pour Zn et Cu) peuvent être abordés. L'étude ouvre aussi une perspective de valorisation de ZLR & ZPR lessivés, pour la lixiviation sélective et de récupération de P

    Bioprocessing of spent lithium ion batteries for critical metals recovery – A review

    Full text link
    The increasing demand for metals and the concomitant depletion of the primary metallic resources is one of the most important environmental and societal challenges nowadays. Critical metals, rare earth elements, base and precious metals demand is growing day-by-day and driving many metals towards the edge of supply risk. On the other hand, the problems linked to waste generation (especially waste electrical and electronic equipment (WEEE)) are also increasing globally. These end-of-life electronic wastes contain significant concentration of critical raw materials accompanied by harmful substances. Spent Li ion batteries is a kind of WEEE stream, bearing considerable concentrations of valuable metals (like Co, Li, Mn and Ni). If the end-of-life Li ion batteries are not managed properly, there is a high risk that these valuable metals and toxic substances could end into the environment. In order to address the environmental complications, sustainable resource management and boost circular economy, it is important to properly manage and recycle these spent Li ionbatteries. Conventional methods based on high-temperature pyro-metallurgical routes together with hydro-metallurgical processing have been widely studied for the recovery of metals from spent LiBs. However, bio-metallurgical approaches have an edge over their counter parts because of their environmentally friendly nature. Microbe-metal interactions have received special attention both in terms of leaching metals from WEEE and also in recovering metal ions from aqueous streams. Microbial technologies are promising for removing metal ions because of less cost, technical feasibility for large scale applications and no need for addition of toxic chemicals thereby avoiding generation of toxic or hazardous byproducts. In this study, particular emphasis is placed on reviewing the progress made in biohydrometallurgy (i.e. bacterial and fungal leaching practices as one and two-step mode) for the leaching of critical metals from waste lithium ion batteries. Biotechnological methods (e.g. biosorption, bioprecipitation and bioelectrochemical treatment) for the recovery of critical metals from pregnant leachates and aqueous streams are also discussed.Special Research Fun
    • …
    corecore