41 research outputs found

    Extending the knowledge system and food value of kumala (lpomoea batatas or sweetpotato) in Vanuatu as a response to climate change : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Horticultural Science at Massey University, Manawatū, New Zealand

    Get PDF
    Figures 3 & 4 and Appendices 6 & 7 were removed for copyright reasons but may be accessed via their source listed in the References.Loss of traditional knowledge in food production is a major problem occurring in many countries due to modernization and globalization. Additionally, further compelled by the impacts of climate change, this can have a devastating effect on the livelihood of people. As a result, farmers are therefore compelled to revive the use of traditional knowledge in food production especially its blended use with contemporary knowledge in adapting to and mitigating climate change impacts. The aim of this study is to identify the contribution of traditional knowledge of kumala (Ipomoea batatas) production in sustaining the livelihoods of people in Vanuatu. The target population of this study was kumala farmers in two villages: Lorevulko and Sara 1 in East Santo, Vanuatu where qualitative data using semi-structured interviews was obtained. A literature review was also undertaken on kumala production in other countries where kumala is commonly grown. The younger generations should be educated on traditional knowledge and skills, and efforts should be made to document traditional knowledge. Traditional knowledge is being used in the pre-production activities of kumala such as planting calendar, site selection, land clearing and soil preparation. Both knowledge systems are used in the production of kumala for example in kumala cultivar selection, division of labour, planting, crop maintenance, preparation and management of kumala during droughts and cyclones. In addition, both traditional and contemporary knowledge are used in post-production of kumala in different storage methods such as field, bag, basket, and food bed. Overall, the findings in this study confirm compelling evidence that traditional knowledge contributes towards the sustainable livelihood of the people in Lorevulko and Sara 1. It shows that there is an assimilation of knowledge systems and they create a cultural output that is unique to location and time, and provides a good example of cultural dynamics which never stand still and which respond to environmental and other pressures. Findings from this research will contribute immensely in improving food security at the household and national level in Vanuatu, and generate sustainable income for farmers and livelihoods for farmers. Researchers can also use the findings of this study as a basis to undertake further studies on traditional knowledge of kumala in Vanuatu. Moreover, the results will be useful for informing and influencing government policy and farming practices

    Supply chain single vendor – Single buyer inventory model with price-dependent demand

    Get PDF
    Purpose: The aim of this article is developing an integrated production-inventory-marketing model for a two-stage supply chain. The demand rate is considered as the Iso-elastic decreasing function of the selling price. The main research goal of the article is to obtain the optimal values of the selling price, order quantity and number of shipments for the proposed model under independent and also joint optimization. In addition, the effects of the model’s parameters on the optimal solution are investigated. Design/methodology/approach: Mathematical modeling is used to obtain the joint total profit function of the supply chain. Then, the iterative solution algorithm is presented to solve the model and determine the optimal solution. Findings and Originality/value: It is observed that under joint optimization, the demand rate and the supply chain’s profit are higher than their values under independent optimization, especially for the more price sensitive demand. Therefore, coordination between the buyer and the vendor is advantageous for the supply chain. On the other hand, joint optimization will be less beneficial when there isn’t a significant difference between the buyer’s and the vendor’s holding costs. Originality/value: The contribution of the article is determining the ordering and pricing policy jointly in the supply chain, which contains one vendor and one buyer while the demand rate is the Iso-elastic function of the selling pricePeer Reviewe

    Assessing and Selecting Sustainable and Resilient Suppliers in Agri-Food Supply Chains Using Artificial Intelligence: A Short Review

    Full text link
    [EN] The supplier evaluation and selection process is critical to increase the sustainability and resilience of the agri-food supply chain. Therefore, in this sector, it is necessary to consider sustainability and resilience criteria in the supplier evaluation and selection process. The use of arti¿cial intelligence techniques allows managing of a lot of information and the reduction of uncertainty for decision making. The objective of this article is to analyze articles that address the selection of suppliers in agrifood supply chains that pursue to increase their sustainability and resilience by using arti¿cial intelligence techniques to analyze the techniques and criteria used and draw conclusions.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015.Zavala-Alcívar, A.; Verdecho Sáez, MJ.; Alfaro Saiz, JJ. (2020). Assessing and Selecting Sustainable and Resilient Suppliers in Agri-Food Supply Chains Using Artificial Intelligence: A Short Review. IFIP Advances in Information and Communication Technology. 598:501-510. https://doi.org/10.1007/978-3-030-62412-5_41S501510598Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S.: Quantitative models for sustainable supply chain management: developments and directions. Eur. J. Oper. Res. 233, 299–312 (2014)Ocampo, L.A., Abad, G.K.M., Cabusas, K.G.L., Padon, M.L.A., Sevilla, N.C.: Recent approaches to supplier selection: a review of literature within 2006–2016. Int. J. Integr. Supply Manage. 12, 22–68 (2018)Valipour, S., Safaei, A.: A resilience approach for supplier selection: using Fuzzy analytic network process and grey VIKOR techniques. J. Clean. Prod. 161, 431–451 (2017)Amindoust, A.: A resilient-sustainable based supplier selection model using a hybrid intelligent method. Comput. Ind. Eng. 126, 122–135 (2018)Zavala-Alcívar, A., Verdecho, M.-J., Alfaro-Saiz, J.-J.: A conceptual framework to manage resilience and increase sustainability in the supply chain. Sustainability 12(16), 6300 (2020)Villalobos, J.R., Soto-Silva, W.E., González-Araya, M.C., González-Ramirez, R.G.: Research directions in technology development to support real-time decisions of fresh produce logistics: A review and research agenda. Comput. Electron. Agric. 167, 105092 (2019)Ristono, A., Santoso, P.B., Tama, I.P.: A literature review of design of criteria for supplier selection. J. Ind. Eng. Manage. 11, 680–696 (2018)Torres-Ruiz, A., Ravindran, A.R.: Multiple criteria framework for the sustainability risk assessment of a supplier portfolio. J. Clean. Prod. 172, 4478–4493 (2018)Setak, M., Sharifi, S., Alimohammadian, A.: Supplier selection and order allocation models in supply chain management: a review. World Appl. Sci. J. 18, 55–72 (2012)Ravindran, A.R., Warsing, D.P.: Supplier selection models and methods. In: Supply Chain Engineering: Models and Applications. Taylor and Francis Group, Boca Raton, Florida (2013)De Boer, L., Labro, E., Morlacchi, P.: A review of methods supporting supplier selection. Eur. J. Purch. Supply Manage. 7, 75–89 (2011)De Felice, F., Deldoost, M.H., Faizollahi, M., Petrillo, A.: Performance measurement model for the supplier selection based on AHP. Int. J. Eng. Bus. Manag. 7, 1–13 (2015)Zimmer, K., Fröhling, M., Schultmann, F.: Sustainable supplier management – a review of models supporting sustainable supplier selection, monitoring and development. Int. J. Prod. Res. 54, 1412–1442 (2016)Christopher, M., Peck, H.: Building the resilient supply chain. Int. J. Logist. Manag. 15, 1–14 (2014)Ali, A., Mahfouz, A., Arisha, A.: Analysing supply chain resilience: integrating the constructs in a concept mapping framework via a systematic literature review. Supply Chain Manage. 22, 16–39 (2017)Verdecho, M., Alarcón-Valero, F., Pérez-Perales, D., et al.: A methodology to select suppliers to increase sustainability within supply chains. Cent. Eur. J. Oper. Res. (2020). https://doi.org/10.1007/s10100-019-00668-3Rabelo, L., Bhide, S., Gutierrez, E.: Artificial Intelligence: Advances in Research and Applications. Nova Science Publishers, Inc., Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States (2017)Denyer, D., Tranfield, D.: Producing a systematic review. In: The Sage Handbook of Organizational Research Methods. SAGE Publications Ltd., pp. 671–689 (2019)Chen, Y.-J.: Structured methodology for supplier selection and evaluation in a supply chain. Inf. Sci. (Ny) 181, 1651–1670 (2011)Hamdi, F., Ghorbel, A., Masmoudi, F., Dupont, L.: Optimization of a supply portfolio in the context of supply chain risk management: literature review. J. Intell. Manuf. 29(4), 763–788 (2015). https://doi.org/10.1007/s10845-015-1128-3Kumar, V., Srinivasan, S., Das, S.: Optimal solution for supplier selection based on SMART fuzzy case base approach. In: 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems. SCIS 2014 and 15th International Symposium on Advanced Intelligent Systems. ISIS 2014, Institute of Electrical and Electronics Engineers Inc., Department of Computer Science, IISJ Yokohama, Tokai Chiba, Japan, pp. 386–391 (2014)Jahani, A., Murad, M.A.A., bin Sulaiman, M.N., Selamat, M.H.: An agent-based supplier selection framework: Fuzzy case-based reasoning perspective. Strateg. Outsourcing 8, 180–205 (2015)Wang, Q.: Hybrid knowledge-based flexible supplier selection. In: 8th International Conference on Management of e-Commerce and e-Government. ICMeCG 2014. Institute of Electrical and Electronics Engineers Inc., Department of Information Management, Shanghai Finance University, Shanghai, China, pp. 235–239 (2014)Bai, C., Sarkis, J.: Green supplier development: analytical evaluation using rough set theory. J. Clean. Prod. 18, 1200–1210 (2010)Bai, C., Sarkis, J.: Integrating sustainability into supplier selection with grey system and rough set methodologies. Int. J. Prod. Econ. 124, 252–264 (2010)Guo, F., Lu, Q.: Partner selection optimization model of agricultural enterprises in supply chain. Adv. J. Food Sci. Technol. 5, 1285–1291 (2013)Azadnia, A.H., Saman, M.Z.M., Wong, K.Y.: Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process. Int. J. Prod. Res. 53, 383–408 (2015)Miranda-Ackerman, M.A., Azzaro-Pantel, C., Aguilar-Lasserre, A.A.: A green supply chain network design framework for the processed food industry: application to the orange juice agrofood cluster. Comput. Ind. Eng. 109, 369–389 (2017)Hajikhani, A., Khalilzadeh, M., Sadjadi, S.J.: A fuzzy multi-objective multi-product supplier selection and order-allocation problem in supply chain under coverage and price considerations: an urban agricultural case study. Sci. Iran. 25, 431–449 (2018)Zhang, H., Cui, Y.: A model combining a Bayesian network with a modified genetic algorithm for green supplier selection. Simulation 95, 1165–1183 (2019)Yadav, S., Garg, D., Luthra, S.: Selection of third-party logistics services for internet of things-based agriculture supply chain management. Int. J. Logist. Syst. Manage. 35, 204–230 (2020)Yazdani, M., Wang, Z.X., Chan, F.T.S.: A decision support model based on the combined structure of DEMATEL, QFD and fuzzy values. Soft. Comput. 24(16), 12449–12468 (2020). https://doi.org/10.1007/s00500-020-04685-2Zhang, H., Feng, H., Cui, Y., Wang, Y.: A fuzzy Bayesian network model for quality control in O2O e-commerce. Int. J. Comput. Commun. Control 15(1), (2020). article number 1003. https://doi.org/10.15837/ijccc.2020.1.3783Amiri, S.A.H.S., Zahedi, A., Kazemi, M., Soroor, J., Hajiaghaei-Keshteli, M.: Determination of the optimal sales level of perishable goods in a two-echelon supply chain network. Comput. Ind. Eng. 139, 106156 (2020)Roy, S., et al.: A framework for sustainable supplier selection with transportation criteria. Int. J. Sustain. Eng. 13(2), 77–92 (2020)Parkouhi, S.V., Ghadikolaei, A.S., Lajimi, H.F.: Resilient supplier selection and segmentation in grey environment. J. Clean. Prod. 207, 1123–1137 (2019)Camarinha-Matos, L.M., Afsarmanesh, H., Galeano, N., Molina, A.: Collaborative networked organizations – concepts and practice in manufacturing enterprises. Comput. Ind. Eng. 57, 46–60 (2009)Lezoche, M., Panetto, H., Kacprzyk, J., Hernandez, J., Díaz, M.A.: Agri-food 4.0: a survey of the supply chains and technologies for the future agriculture. Comput. Ind. 117, 103187 (2020)Alikhani, R., Torabi, S., Altay, N.: Strategic supplier selection under sustainability and risk criteria. Int. J. Prod. Econ. 208, 69–82 (2019

    Hub Covering Location Problem under Gradual Decay Function

    No full text
    145-148This paper developed a mathematical model framework using the single allocation strategy for hub covering location problem. The model encompassed the transportation time covering under gradual decay function. Within a certain transportation time for the origin and destination nodes among two hubs, the route is fully covered, and beyond another specified transportation time the route is not covered. Between these two given service times, the coverage is linear for the routes. A tabu search has been used to solve some problems such as CAB and AP. The quality of solutions obtained using TS have been compared with the achieved one using CPLEX solver. Plenty of experimental study evaluated the performance of the gradual decay function

    A Multi-Product Inventory Model for Selecting the First and Second Layers of Suppliers in a Supply Chain

    No full text
    In recent years, Supplier evaluation and selection, an important element in supply chain management, has been gaining attention in both academic literature and industrial practice. The Mixed integer multi-Objective non-Linear programming model (MIMONLP) presented in this paper aimed to evaluate and select the appropriate set of suppliers considering quantitative and qualitative criteria and in addition to selecting the first layer's suppliers which relate directly to the organization, analyses the characteristics of second-layers suppliers, and design a network to determine the flow rate of products and materials between buyers and best suppliers in both layers. Another important feature of this model is considering holding costs of different products over the planning horizon and quantity discounts for the first layer's suppliers at the same time. Finally, the model is solved by using goal programming approach and numerical examples are presented to test the performance of proposed model

    A New Approach for Supplier Selection Process from the Features of Second Layer Suppliers Point of View

    No full text
    In nowadays world competitive market, on account of the development of electronic media and its influence on shortening distances, companies require some core competencies in order to be able to compete with numerous competitors in industry and sustain their situation in such a market. In addition companies achieve this target are those which their processes perform great and exploit from competitive price, quality, guarantee, etc. Since some parameters such as price and quality are so dependent on the performance of company supply chain management, so the results can highly impress the final price and quality of products. One of the main processes of supply chain management is supplier selection process which its accurate implementation can dramatically increase company competitiveness. In presented article two layers of suppliers have been considered as a chain of suppliers. First layer suppliers are evaluated by two groups of criteria which the first one encompasses criteria belongs to first layer suppliers features and the second group contains criteria belong to the characteristics of second layer suppliers. One of the criteria is the performance of second layer suppliers against environmental issues. Then the proposed approach is solved by a method combined of concepts of fuzzy set theory (FST) and linear programming (LP) which has been nourished by real data extracted from an engineering design and supplying parts company. At the end results reveal the high importance of considering second layer suppliers features as a criteria for selecting the best supplier

    Differential evolution algorithm for multi-commodity and multi-level of service hub covering location problem

    No full text
    The hub location problem involves a network of origins and destinations over which transportation takes place. There are many studies associated with finding the location of hub nodes and the allocation of demand nodes to these located hub nodes to transfer the only one kind of commodity under one level of service. However, in this study, carrying different commodity types from origin to destination under various levels of services (e.g. price, punctuality, reliability or transit time) is studied. Quality of services experienced by users such as speed, convenience, comfort and security of transportation facilities and services is considered as the level of service. In each system, different kinds of commodities with various levels of services can be transmitted. The appropriate level of service that a commodity can be transmitted through is chosen by customer preferences and the specification of the commodity. So, a mixed integer programming formulation for single allocation hub covering location problem, which is based on the idea of transferring multi commodity flows under multi levels of service is presented. These two are applied concepts, multi-commodity and multi-level of service, which make the model's assumptions closer to the real world problems. In addition, a differential evolution algorithm is designed to find near-optimal solutions. The obtained solutions using differential evolution (DE) algorithm (upper bound), where its parameters are tuned by response surface methodology, are compared with exact solutions and computed lower bounds by linear relaxation technique to prove the efficiency of proposed DE algorithm
    corecore