9 research outputs found

    Effect of bradykinin on nitric oxide production, urea synthesis and viability of rat hepatocyte cultures

    Get PDF
    BACKGROUND: It is well known that cytotoxic factors, such as lipopolysaccharides, derange nitrogen metabolism in hepatocytes and nitric oxide (NO) is involved among the other factors regulating this metabolic pathway. Hepatocytes have been shown to express large levels of NO following exposure to endotoxins, such as bacterial lipopolysaccharide and/or cytokines, such as tumour necrosis factor-α (TNFα), interleukin-1. The control role of arginine in both urea and NO biosynthesis is well known, when NO is synthesized from arginine, by the NOS reaction, citrulline is produced. Thus, the urea cycle is bypassed by the NOS reaction. Many authors demonstrated in other cellular types, like cardiomyocytes, that bradykinin caused the increase in reactive oxygen species (ROS) generation. The simultaneous increase of NO and ROS levels could cause peroxynitrite synthesis, inducing damage and reducing cell viability. The aim of this research is to study the effect of bradykinin, a proinflammatory mediator, on cell viability and on urea production in cultures of rat hepatocytes. RESULTS: Hepatocytes were treated with bradykinin, that stimulates nitric oxide synthase (NOS). NO release was determined using 4,5 diaminofluorescein diacetate (DAF-2DA), as fluorescent indicator of NO. Addition of the NOS inhibitor, N(g)-nitro-L-arginine methyl ester (L-NAME), to the culture medium inhibited the increase of NO production. Exposure of hepatocytes to bradykinin 0,1 mM for 2 hours resulted in a significant decrease of urea synthesis. Cell viability, instead, showed a significant decrease 24 hours after the end of bradykinin treatment as determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5diphenyl-2H-tetrazolium (MTT) assay. L-NAME addition recovered urea production and cell viability at control values. CONCLUSION: The findings suggest that the cell toxicity, after bradykinin treatment, effectively depends upon exposure to increased NO levels and the effects are prevented by L-NAME. The results show also that the increased NO synthesis induces a reduced urea production, that is another index of cell damage

    Tissues injury and pathological changes in Hyla intermedia juveniles after chronic larval exposure to tebuconazole.

    Get PDF
    Abstract Tebuconazole (TBZ), an azole pesticide, is one of the most frequently detected fungicides in surface water. Despite its harmful effects, mainly related to endocrine disturbance, the consequences of TBZ exposure in amphibians remain poorly understood. Here, we investigated the adverse and delayed effects of TBZ chronic exposure on a native anuran species, often inhabiting cultivated areas, the Italian tree frog (Hyla intermedia). To disclose the multiple mechanisms of action through which TBZ exerts its toxicity we exposed tadpoles over the whole larval period to two sublethal TBZ concentrations (5 and 50 ÎĽg/L), and we evaluated histological alterations in three target organs highly susceptible to xenobiotics: liver, kidney, and gonads. We also assessed morphometric and gravimetric parameters: snout-vent length (SVL), body mass (BM), liver somatic index (LSI), and gonad-mesonephros complex index (GMCI) and determined sex ratio, gonadal development, and differentiation. Our results show that TBZ induces irreversible effects on multiple target organs in H. intermedia, exerting its harmful effects through several pathological pathways, including a massive inflammatory response. Moreover, TBZ markedly affects sexual differentiation also by inducing the appearance of sexually undetermined individuals and a general delay of germ cell maturation. Given the paucity of data on the effects of TBZ in amphibians, our results will contribute to a better understanding of the environmental risk posed by this fungicide to the most endangered group of vertebrates

    Morphological and Functional Alterations in Zebrafish (Danio rerio) Liver after Exposure to Two Ecologically Relevant Concentrations of Lead

    Get PDF
    Lead (Pb) is a non-essential, highly toxic, and persistent element widely recognized as one of the most concerning pollutants. It is listed on the Priority List of Hazardous Substances. Widespread environmental contamination from Pb is a serious issue for human health and wildlife. In fish, Pb mainly accumulates in the liver, which is a key component for metal detoxification and excretion processes. In this study, we investigated, for the first time, the morphological and functional injuries induced in zebrafish (Danio rerio) liver by two very low and environmentally relevant concentrations of Pb (2.5 and 5 μg/L) after 48, 96, and 192 h of exposure. We observed significant histological alterations in all the exposed samples, and it was demonstrated that the extent of injuries increased with dose and exposure time. The most common modifications observed were congestion of blood vessels and sinusoids, cytoplasmic vacuolizations, parenchyma dyschromia, and macrophage proliferation. Pb administration also resulted in a significant increase in lipid content and the upregulation of key genes that are involved in metal detoxification (mtf1) and the defensive response against oxidative stress (sod1 and cat). We show that even very low doses of Pb can disrupt liver morphology and function.Fil: Macirella, Rachele. Università della Calabria; ItaliaFil: Curcio, Vittoria. Università della Calabria; ItaliaFil: Ahmed, Abdalmoiz I. M.. Università della Calabria; ItaliaFil: Talarico, Federica. Università della Calabria; ItaliaFil: Sesti, Settimio. Università della Calabria; ItaliaFil: Paravani, Enrique Valentin. Universidad Nacional de Entre Ríos. Facultad de Ingeniería; ArgentinaFil: Odetti, Lucia Magdalena. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Cátedra de Toxicología y Bioquímica Legal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Mezzasalma, Marcello. Università della Calabria; ItaliaFil: Brunelli, Elvira. Università della Calabria; Itali

    Morphological and Molecular Alterations Induced by Lead in Embryos and Larvae of Danio rerio

    No full text
    Lead (Pb) is one of the most toxic and persistent elements and may adversely affect both humans and wildlife. Given the risks posed to humans, lead is listed among priority substances of public health importance worldwide. In fish, available studies deal with high doses, and the potential hazard of Pb at low concentrations is largely unknown. Given its well-demonstrated translational value for human toxicity research, we used zebrafish as a model species. Embryos were exposed to two environmentally relevant concentrations of lead (2.5 and 5 µg/L) from 6 h post-fertilization and analyzed after 48, 96, and 144 h. The morphological abnormality arose after 48 h, and the incidence and intensity were dose and time dependent. Spinal and tail deformities were the most frequently detected alterations. Pb also modulated the expression of genes involved in the toxicological responses (sod and mt), thus demonstrating that zebrafish’s early stages are able to mount an adaptive response. Moreover, ldh and β-catenin were significantly upregulated in all groups, whereas wnt3 expression was increased in the high concentration group. Our results confirm that zebrafish embryos and larvae are valuable early warning indicators of pollution and may play a major role in ecosystems and human health monitoring

    Morphological and Functional Alterations Induced by Two Ecologically Relevant Concentrations of Lead on Danio rerio Gills

    No full text
    Lead (Pb), due to its high toxicity and bioaccumulation tendency, is one of the top three pollutants of concern for both humans and wildlife and occupies second place in the Priority List of Hazardous Substances. In freshwater fish, Pb is mainly absorbed through the gills, where the greatest accumulation occurs. Despite the crucial role of gills in several physiological functions such as gas exchange, water balance, and osmoregulation, no studies evaluated the effects of environmentally relevant concentrations of Pb on this organ, and existing literature only refers to high levels of exposure. Herein we investigated for the first time the molecular and morphological effects induced by two low and environmentally relevant concentrations of Pb (2.5 and 5 μg/L) on the gills of Danio rerio, a model species with a high translational value for human toxicity. It was demonstrated that Pb administration at even low doses induces osmoregulatory dysfunctions by affecting Na+/K+-ATPase and AQP3 expression. It was also shown that Pb upregulates MTs as a protective response to prevent cell damage. Modulation of SOD confirms that the production of reactive oxygen species is an important toxicity mechanism of Pb. Histological and morphometric analysis revealed conspicuous pathological changes, both dose- and time-dependent

    Effects of Two Sublethal Concentrations of Mercury Chloride on the Morphology and Metallothionein Activity in the Liver of Zebrafish (Danio rerio)

    No full text
    Mercury (Hg) is a highly hazardous pollutant widely used in industrial, pharmaceutical and agricultural fields. Mercury is found in the environment in several forms, elemental, inorganic (iHg) and organic, all of which are toxic. Considering that the liver is the organ primarily involved in the regulation of metabolic pathways, homeostasis and detoxification we investigated the morphological and ultrastructural effects in Danio rerio liver after 96 h exposure to two low HgCl2 concentrations (7.7 and 38.5 ÎĽg/L). We showed that a short-term exposure to very low concentrations of iHg severely affects liver morphology and ultrastructure. The main effects recorded in this work were: cytoplasm vacuolization, decrease in both lipid droplets and glycogen granules, increase in number of mitochondria, increase of rough endoplasmic reticulum and pyknotic nuclei. Pathological alterations observed were dose dependent. Trough immunohistochemistry, in situ hybridization and real-time PCR analysis, the induction of metallothionein (MT) under stressor conditions was also evaluated. Some of observed alterations could be considered as a general response of tissue to heavy metals, whereas others (such as increased number of mitochondria and increase of RER) may be considered as an adaptive response to mercury

    Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial

    Get PDF
    Background The best treatment option for patients with type 2 diabetes in whom treatment with metformin alone fails to achieve adequate glycaemic control is debated. We aimed to compare the long-term effects of pioglitazone versus sulfonylureas, given in addition to metformin, on cardiovascular events in patients with type 2 diabetes. Methods TOSCA.IT was a multicentre, randomised, pragmatic clinical trial, in which patients aged 50\ue2\u80\u9375 years with type 2 diabetes inadequately controlled with metformin monotherapy (2\ue2\u80\u933 g per day) were recruited from 57 diabetes clinics in Italy. Patients were randomly assigned (1:1), by permuted blocks randomisation (block size 10), stratified by site and previous cardiovascular events, to add-on pioglitazone (15\ue2\u80\u9345 mg) or a sulfonylurea (5\ue2\u80\u9315 mg glibenclamide, 2\ue2\u80\u936 mg glimepiride, or 30\ue2\u80\u93120 mg gliclazide, in accordance with local practice). The trial was unblinded, but event adjudicators were unaware of treatment assignment. The primary outcome, assessed with a Cox proportional-hazards model, was a composite of first occurrence of all-cause death, non-fatal myocardial infarction, non-fatal stroke, or urgent coronary revascularisation, assessed in the modified intention-to-treat population (all randomly assigned participants with baseline data available and without any protocol violations in relation to inclusion or exclusion criteria). This study is registered with ClinicalTrials.gov, number NCT00700856. Findings Between Sept 18, 2008, and Jan 15, 2014, 3028 patients were randomly assigned and included in the analyses. 1535 were assigned to pioglitazone and 1493 to sulfonylureas (glibenclamide 24 [2%], glimepiride 723 [48%], gliclazide 745 [50%]). At baseline, 335 (11%) participants had a previous cardiovascular event. The study was stopped early on the basis of a futility analysis after a median follow-up of 57\uc2\ub73 months. The primary outcome occurred in 105 patients (1\uc2\ub75 per 100 person-years) who were given pioglitazone and 108 (1\uc2\ub75 per 100 person-years) who were given sulfonylureas (hazard ratio 0\uc2\ub796, 95% CI 0\uc2\ub774\ue2\u80\u931\uc2\ub726, p=0\uc2\ub779). Fewer patients had hypoglycaemias in the pioglitazone group than in the sulfonylureas group (148 [10%] vs 508 [34%], p<0\uc2\ub70001). Moderate weight gain (less than 2 kg, on average) occurred in both groups. Rates of heart failure, bladder cancer, and fractures were not significantly different between treatment groups. Interpretation In this long-term, pragmatic trial, incidence of cardiovascular events was similar with sulfonylureas (mostly glimepiride and gliclazide) and pioglitazone as add-on treatments to metformin. Both of these widely available and affordable treatments are suitable options with respect to efficacy and adverse events, although pioglitazone was associated with fewer hypoglycaemia events. Funding Italian Medicines Agency, Diabete Ricerca, and Italian Diabetes Society
    corecore