392 research outputs found

    Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite

    Get PDF
    [EN] In this work, the effect of the addition of different amount of nanosized hydroxyapatite (nHA) on the shape memory behavior of blends based on poly (lactic acid) (PLA) and poly (epsilon-caprolactone) (PCL) has been studied. In particular PLA/PCL blend with 70 wt % PLA has been reinforced with 0.5, 1 and 3 wt % nHA. Moreover, the relationship between the morphology and the final properties of the nanocomposites has been investigated by field emission scanning electron microscopy, confocal Raman spectroscopy and atomic force microscopy. In particular, PeakForce has been used to study quantitative nanomechanical properties of the multifunctional materials leading to conclusion that nHA increase the phase separation between PLA and PCL as well as act as reinforcements for the PCL-rich phase of the nanocomposites. Furthermore, excellent thermally-activated shape memory response has been obtained for all the nanocomposites at 55 degrees C. Finally, the disintegration under composting conditions at laboratory scale level was studied in order to confirm the biodegradable character of these nanocomposites. Indeed, these materials are able to be used for biomedical issues as well as for packaging applications where both thermally-activated shape memory effect and biodegradability are requested.Authors thank the Spanish Ministry of Economy, Industry and Competitiveness, MINEICO, (MAT2017-88123-P) and the Regional Government of Madrid (S2013/MIT-2862) for the economic support. M.P.A. and L.P. acknowledge the Juan de la Cierva (FJCI-2014-20630) and Ramon y Cajal (RYC-2014-15595) contracts from the MINEICO, respectively. The authors also thanks CSIC for the I-Link project (I-Link1149).Peponi, L.; Sessini, V.; Arrieta, MP.; Navarro-Baena, I.; Sonseca Olalla, Á.; Dominici, F.; Giménez Torres, E.... (2018). Thermally-activated shape memory effect on biodegradable nanocomposites based on PLA/PCL blend reinforced with hydroxyapatite. Polymer Degradation and Stability. 151:36-51. https://doi.org/10.1016/j.polymdegradstab.2018.02.019S365115

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→μ+μ−μ+μ− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→μ+μ− decay as normalization, the branching fraction B(η→μ+μ−μ+μ−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2μ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Search for a high-mass dimuon resonance produced in association with b quark jets at s \sqrt{s} = 13 TeV

    Get PDF

    Observation of four top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for Scalar Leptoquarks Produced via τ-Lepton-Quark Scattering in pppp Collisions at s=13TeV\sqrt{s}=13 TeV

    Get PDF
    The first search for scalar leptoquarks produced in τ-lepton–quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138  fb1^{−1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
    corecore