6 research outputs found

    Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice

    Get PDF
    Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas. These findings challenge the idea that tau pathology in Alzheimer's disease is merely a downstream effect of amyloid production/deposition and suggest that reciprocal interactions between beta-amyloid and tau alterations may take place in vivo

    Maternal Obesity, Overweight and Gestational Diabetes Affect the Offspring Neurodevelopment at 6 and 18 Months of Age – A Follow Up from the PREOBE Cohort

    Get PDF
    The study was registered at www.ClinicalTrials.gov, identifier:NCT01634464).Background: Brain development in fetal life and early infancy is critical to determine lifelong performance in various neuropsychological domains. Metabolic pathologies such as overweight, obesity, and gestational diabetes in pregnant women are prevalent and increasing risk factors that may adversely affect long-term brain development in their offspring.Objective: The objective of this research was to investigate the influence of maternal metabolic pathologies on the neurodevelopment of the offspring at 6 and 18 months of life.Design: This was a prospective case-control study of 331 mother- and child pairs from Granada, Spain. The mothers were included during pregnancy into four groups according to their pre-gestational body mass index and their gestational diabetes status; overweight (n:56), obese (n:64), gestational diabetic (n:79), and healthy normal weight controls (n:132). At 6 months and 18 months we assessed the children with the Bayley III scales of neurodevelopment.Results: At 6 months (n=215), we found significant group differences in cognition composite language, and expressive language. Post hoc test revealed unexpectedly higher scores in the obese group compared to the normal weight group and a similar trend in overweight and diabetic group. The effects on language remained significant after adjusting for confounders with an adjusted odds ratio for a value above median in composite language score of 3.3 (95% CI: 1.1, 10.0; p=0.035) for children of obese mothers. At 18 month (n=197), the offspring born to obese mothers had lost five points in language composite scores and the previous differences in language and cognition was replaced by a suggestive trend of lower gross motor scores in the overweight, obese, and diabetic groups.Conclusions: Infants of obese mothers had a temporary accelerated development of cognition and language, followed by a rapid deceleration until 18 months of age, particularly of language scores. This novel observation prompts further confirmative studies to explore possible placental and neurodevelopmental mechanisms involved.This study was funded by Spanish Ministry of Innovation and Science. Junta de Andalucía: Excellence Projects (P06-CTS-02341); Spanish Ministry of Education (Grant no. SB2010-0025); Spanish Ministry of Economy and Competitiveness (BFU2012-40254-C03-01); Further support was received by Abbott Laboratories, Granada, Spain

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice

    No full text
    In addition to genetic factors, environmental factors have long been suspected to contribute to the pathogenesis of Parkinson's disease (PD). We investigated the possible interaction between genetic factors and neurotoxins by testing whether alpha-synuclein A30P Tg5093 transgenic mice show increased sensitivity to secondary toxic insults like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone. While sensitivity to chronic treatment with rotenone was not enhanced in the Tg5093 line, chronic treatment with 80 or 150 mg/kg MPTP resulted in increased deterioration of the nigrostriatal dopaminergic system as assessed by quantitation of nigral tyrosine hydroxylase (TH) positive neurons and striatal dopamine (DA) levels in Tg5093 mice when compared to non-transgenic littermate controls. Thus, the results of this study demonstrate a role for the overexpression of mutant human alpha-synuclein A30P in increased vulnerability of DA neurons to MPTP

    Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice

    No full text
    In addition to genetic factors, environmental factors have long been suspected to contribute to the pathogenesis of Parkinson's disease (PD). We investigated the possible interaction between genetic factors and neurotoxins by testing whether alpha-synuclein A30P Tg5093 transgenic mice show increased sensitivity to secondary toxic insults like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone. While sensitivity to chronic treatment with rotenone was not enhanced in the Tg5093 line, chronic treatment with 80 or 150 mg/kg MPTP resulted in increased deterioration of the nigrostriatal dopaminergic system as assessed by quantitation of nigral tyrosine hydroxylase (TH) positive neurons and striatal dopamine (DA) levels in Tg5093 mice when compared to non-transgenic littermate controls. Thus, the results of this study demonstrate a role for the overexpression of mutant human alpha-synuclein A30P in increased vulnerability of DA neurons to MPTP

    Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice

    No full text
    Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas. These findings challenge the idea that tau pathology in Alzheimer's disease is merely a downstream effect of amyloid production/deposition and suggest that reciprocal interactions between beta-amyloid and tau alterations may take place in vivo
    corecore