10 research outputs found

    UDP-glucose promotes neutrophil recruitment in the lung

    Get PDF
    In addition to their role in glycosylation reactions, UDP-sugars are released from cells and activate widely distributed cell surface P2Y 14 receptors (P2Y 14 R). However, the physiological/pathophysiological consequences of UDP-sugar release are incompletely defined. Here, we report that UDP-glucose levels are abnormally elevated in lung secretions from patients with cystic fibrosis (CF) as well as in a mouse model of CF-like disease, the βENaC transgenic (Tg) mouse. Instillation of UDP-glucose into wild-type mouse tracheas resulted in enhanced neutrophil lung recruitment, and this effect was nearly abolished when UDP-glucose was co-instilled with the P2Y 14 R antagonist PPTN [4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl-2-naphthoic acid]. Importantly, administration of PPTN to βENaC-Tg mice reduced neutrophil lung inflammation. These results suggest that UDP-glucose released into the airways acts as a local mediator of neutrophil inflammation

    Similarities between UDP-Glucose and Adenine Nucleotide Release in Yeast: Involvement of the Secretory Pathway

    Get PDF
    Extracellular UDP-glucose is a natural purinergic receptor agonist, but its mechanisms of cellular release remain unclear. We studied these mechanisms in Saccharomyces cerevisiae, a simple model organism that releases ATP, another purinergic agonist. Similar to ATP, UDP-glucose was released by S. cerevisiae at a rate that was linear over time. However, unlike ATP release, UDP-glucose release was not dependent on glucose stimulation. This discrepancy was resolved by demonstrating the apparent glucose stimulation of ATP release reflected glucose-dependent changes in the intracellular pattern of adenine nucleotides, with AMP release dominating in the absence of glucose. Indeed, total adenine nucleotide release, like UDP-glucose release, did not vary with glucose concentration over the short term. The genetic basis of UDP-glucose release was explored through analysis of deletion mutants, aided by development of a novel bioassay for UDP-glucose based on signaling through heterologously expressed human P2Y14 receptors. Using this assay, an elevated rate of UDP-glucose release was demonstrated in mutants lacking the putative Golgi nucleotide sugar transporter YMD8. An increased rate of UDP-glucose release in ymd8Δ was reduced by deletion of the YEA4 UDP-N-acetylglucosamine or the HUT1 UDP-galactose transporters, and overexpression of YEA4 or HUT1 increased the rate of UDP-glucose release. These findings suggest an exocytotic release mechanism similar to that of ATP, a conclusion supported by decreased rates of ATP, AMP, and UDP-glucose release in response to the secretory inhibitor Brefeldin A. These studies demonstrate the involvement of the secretory pathway in nucleotide and nucleotide sugar efflux in yeast and offer a powerful model system for further investigation

    Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    Get PDF
    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion

    Rho Signaling Regulates Pannexin 1-mediated ATP Release from Airway Epithelia

    Get PDF
    ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia

    Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways

    No full text
    ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca(2+) chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca(2+)-dependent vesicular mechanisms not associated with mucin granule secretion

    UDP-glucose promotes neutrophil recruitment in the lung

    No full text
    In addition to their role in glycosylation reactions, UDP-sugars are released from cells and activate widely distributed cell surface P2Y(14) receptors (P2Y(14)R). However, the physiological/pathophysiological consequences of UDP-sugar release are incompletely defined. Here, we report that UDP-glucose levels are abnormally elevated in lung secretions from patients with cystic fibrosis (CF) as well as in a mouse model of CF-like disease, the βENaC transgenic (Tg) mouse. Instillation of UDP-glucose into wild-type mouse tracheas resulted in enhanced neutrophil lung recruitment, and this effect was nearly abolished when UDP-glucose was co-instilled with the P2Y(14)R antagonist PPTN [4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl-2-naphthoic acid]. Importantly, administration of PPTN to βENaC-Tg mice reduced neutrophil lung inflammation. These results suggest that UDP-glucose released into the airways acts as a local mediator of neutrophil inflammation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-016-9524-5) contains supplementary material, which is available to authorized users

    Endoplasmic Reticulum/Golgi Nucleotide Sugar Transporters Contribute to the Cellular Release of UDP-sugar Signaling Molecules*S⃞

    Get PDF
    Extracellular UDP-sugars promote cellular responses by interacting with widely distributed P2Y14 receptors, but the mechanisms by which these molecules are released from cells are poorly understood. Given the active role of UDP-sugars in glycosylation reactions within the secretory pathway, we hypothesized that UDP-sugar release includes an exocytotic component. This hypothesis was tested by assessing the contribution of endoplasmic reticulum (ER)/Golgi-resident UDP-GlcNAc transporters to the cellular release of their cognate substrates. A sensitive and highly selective assay for UDP-GlcNAc mass was developed using purified AGX2, an isoenzyme of human UDP-GlcNAc pyrophosphorylase. Robust constitutive release of UDP-GlcNAc was observed in yeast as well as in well differentiated human airway epithelial cells. The human UDP-GlcNAc transporter HFRC1 was overexpressed in human bronchial epithelial cells and was shown to localize in the Golgi and to enhance the surface expression of N-acetylglucosamine-rich glycans. HFRC1-overexpressing cells also displayed increased constitutive and hypotonic stress-stimulated release of UDP-GlcNAc. Yeast mutants lacking Yea4 (the ER UDP-GlcNAc transporter endogenously expressed in Saccharomyces cerevisiae) showed reduced UDP-GlcNAc release. Yea4-deficient cells complemented with Yea4 showed UDP-GlcNAc release rates at levels similar to or higher than wild type cells. Our results illustrate that ER/Golgi lumen constitutes a significant source of extracellular UDP-sugars and therefore plays a critical role in nucleotide sugar-promoted cell signaling
    corecore