10 research outputs found

    Senescence promotes in vivo reprogramming through p16INK4a and IL-6

    Get PDF
    Cellular senescence is a damage response aimed to orchestrate tissue repair. We have recently reported that cellular senescence, through the paracrine release of interleukin-6 (IL6) and other soluble factors, strongly favors cellular reprogramming by Oct4, Sox2, Klf4, and c-Myc (OSKM) in nonsenescent cells. Indeed, activation of OSKM in mouse tissues triggers senescence in some cells and reprogramming in other cells, both processes occurring concomitantly and in close proximity. In this system, Ink4a/Arf-null tissues cannot undergo senescence, fail to produce IL6, and cannot reprogram efficiently; whereas p53-null tissues undergo extensive damage and senescence, produce high levels of IL6, and reprogram efficiently. Here, we have further explored the genetic determinants of in vivo reprogramming. We report that Ink4a, but not Arf, is necessary for OSKM-induced senescence and, thereby, for the paracrine stimulation of reprogramming. However, in the absence of p53, IL6 production and reprogramming become independent of Ink4a, as revealed by the analysis of Ink4a/Arf/p53 deficient mice. In the case of the cell cycle inhibitor p21, its protein levels are highly elevated upon OSKM activation in a p53-independent manner, and we show that p21-null tissues present increased levels of senescence, IL6, and reprogramming. We also report that Il6-mutant tissues are impaired in undergoing reprogramming, thus reinforcing the critical role of IL6 in reprogramming. Finally, young female mice present lower efficiency of in vivo reprogramming compared to male mice, and this gender difference disappears with aging, both observations being consistent with the known anti-inflammatory effect of estrogens. The current findings regarding the interplay between senescence and reprogramming may conceivably apply to other contexts of tissue damage.L.M. was recipient of an FPU contract from the Spanish Ministry of Education (MECD). Work in the laboratory of M.S. was funded by the CNIO and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (RETOS project), the European Research Council (ERC Advanced Grant), the European Union (RISK-IR project), and the Botin Foundation and Banco Santander (Santander Universities Global Division). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.S

    Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers

    Get PDF
    The levels, regulation and prognostic value of p21 in head and neck squamous cell carcinomas (HNSCC) has been puzzling for years. Here, we report a new mechanism of regulation of p21 by the mTORC1/4E-BP1 pathway. We find that non-phosphorylated 4E-BP1 interacts with p21 and induces its degradation. Accordingly, hyper-activation of mTORC1 results in phosphorylation of 4E-BP1 and stabilization of p21. In HNSCC, p21 levels strongly correlate with mTORC1 activity but not with p53 status. Finally, clinical data indicate that HNSCC patients with p21 and phospho-S6-double-positive tumours present a better disease-specific survival. We conclude that over-activation of the mTORC1/4E-BP1/p21 pathway is a frequent and clinically relevant alteration in HNSCC.We are grateful to Reidar Grenman, Silvio Gutkind, Nahum Sonenberg, Gordon Peters, David Sabatini and Mariano Barbacid for sharing critical reagents. We also thank Aurora Astudillo, Aitana Vallina, Laura Alonso-Dura ́n and Eva Allonca for excellent technical assistance. Work in the laboratory of M.S. is funded by the CNIO and by grants from the Spanish Ministry of Economy (SAF) co-funded by the European Regional Development Fund, the European Research Council (ERC Advanced Grant), the Regional Government of Madrid co-funded by the European Social Fund, the Botin Foundation and BancoSantander (Santander Universities Global Division), the Ramon Areces Foundation an the AXA Foundation. Work in the laboratory of J.M.G.-P. and J.P.R. was supported bygrants from Plan Nacional de DþI 2013–2016 ISCIII (CP13/00013 andPI13/00259),RD12/0036/0015 of Red Tematica de Investigacio ́n Cooperativa en Cancer (RTICC), Spain and the FEDER Funding Program from the European UnionS

    NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation

    Get PDF
    The histone methyltransferase NSD2/WHSC1/MMSET is overexpressed in a number of solid tumors but its contribution to the biology of these tumors is not well understood. Here, we describe that NSD2 contributes to the proliferation of a subset of lung cancer cell lines by supporting oncogenic RAS transcriptional responses. NSD2 knock down combined with MEK or BRD4 inhibitors causes co-operative inhibitory responses on cell growth. However, while MEK and BRD4 inhibitors converge in the downregulation of genes associated with cancer-acquired super-enhancers, NSD2 inhibition affects the expression of clusters of genes embedded in megabase-scale regions marked with H3K36me2 and that contribute to the RAS transcription program. Thus, combinatorial therapies using MEK or BRD4 inhibitors together with NSD2 inhibition are likely to be needed to ensure a more comprehensive inhibition of oncogenic RAS-driven transcription programs in lung cancers with NSD2 overexpression.This work was supported by Eli Lilly and Company. We would like to thank the Genomics and Flow Cytometry units at the CNIO for technical help, C. Pantoja and the CNIO-Lilly Cell Signaling Therapies Laboratory for sharing protocols and reagents.S

    The RNA Polymerase II Factor RPAP1 Is Critical for Mediator-Driven Transcription and Cell Identity

    Get PDF
    The RNA polymerase II-associated protein 1 (RPAP1) is conserved across metazoa and required for stem cell differentiation in plants; however, very little is known about its mechanism of action or its role in mammalian cells. Here, we report that RPAP1 is essential for the expression of cell identity genes and for cell viability. Depletion of RPAP1 triggers cell de-differentiation, facilitates reprogramming toward pluripotency, and impairs differentiation. Mechanistically, we show that RPAP1 is essential for the interaction between RNA polymerase II (RNA Pol II) and Mediator, as well as for the recruitment of important regulators, such as the Mediator-specific RNA Pol II factor Gdown1 and the C-terminal domain (CTD) phosphatase RPAP2. In agreement, depletion of RPAP1 diminishes the loading of total and Ser5-phosphorylated RNA Pol II on many genes, with super-enhancer-driven genes among the most significantly downregulated. We conclude that Mediator/RPAP1/RNA Pol II is an ancient module, conserved from plants to mammals, critical for establishing and maintaining cell identity.We are grateful to Elisa Varela for assistance with morula and blastocyst fixa- tion. Work in the laboratory of M.S. is funded by the CNIO and the IRB and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (ERDF) (SAF2013-48256-R), the European Research Co uncil (ERC-2014-AdG/66 9622), the Region al Government of Ma- drid co-funded by the Euro pean Social Fund (ReCaRe project), the Euro pean Union (RISK-IR project), the Botin Foundation and Banco Santander (Santander Universities Glo bal Division), the Ramon Areces Found ation, and the AXA Foundation. S.R. was funded by a contract from the Ramon y Cajal Program(RYC-2011-09242) and by the Spanish Ministry of Economy co- funded by the ERDF (SAF2013-49147- P and SAF2016-80874-PS

    Identification and characterization of Cardiac Glycosides as senolytic compounds

    Get PDF
    Compounds with specific cytotoxic activity in senescent cells, or senolytics, support the causal involvement of senescence in aging and offer therapeutic interventions. Here we report the identification of Cardiac Glycosides (CGs) as a family of compounds with senolytic activity. CGs, by targeting the Na+/K+ATPase pump, cause a disbalanced electrochemical gradient within the cell causing depolarization and acidification. Senescent cells present a slightly depolarized plasma membrane and higher concentrations of H+, making them more susceptible to the action of CGs. These vulnerabilities can be exploited for therapeutic purposes as evidenced by the in vivo eradication of tumors xenografted in mice after treatment with the combination of a senogenic and a senolytic drug. The senolytic effect of CGs is also effective in the elimination of senescence-induced lung fibrosis. This experimental approach allows the identification of compounds with senolytic activity that could potentially be used to develop effective treatments against age-related diseases.We thank Matthias Drosten, Alejo Efeyan and Sean Morrison for plasmids. F.T-M. is a postdoctoral fellow from CONACYT (cvu 268632); P.P. is a predoctoral fellow from Xunta de Galicia; M.C. is a "Miguel Servet II" investigator (CPII16/00015). P.P.-R. receives support from a program by the Deputacion de Coruna (BINV-CS/2019). Work in the laboratory of M.C. is funded by grant RTI2018-095818-B-100 (MCIU/AEI/FEDER, UE). P.J.F.-M. is funded by the IMDEA Food Institute, the Ramon Areces Foundation, (CIVP18A3891), and a Ramon y Cajal Award (MICINN) (RYC-2017-22335). M.P.I. is funded by Talento Modalidad-1 Program Grant, Madrid Regional Government (#2018-T1/BIO-11262). F.P. was funded by a Long Term EMBO Fellowship (ALTF-358-2017) and F.H-G. was funded by the PhD4MD Programme of the IRB, Hospital Clinic and IDIBAPS. Work in the laboratory of M.S. was funded by the IRB and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (ERDF) (SAF2013-48256-R), the European Research Council (ERC-2014-AdG/669622), and "laCaixa" Foundation.S

    Interaccion de la proteina p6 con los origenes de replicacion del bacteriofago #phi#29

    No full text
    Centro de Informacion y Documentacion Cientifica (CINDOC). C/Joaquin Costa, 22. 28002 Madrid. SPAIN / CINDOC - Centro de Informaciòn y Documentaciòn CientìficaSIGLEESSpai

    AAVvector-mediated in vivo reprogramming into pluripotency

    Get PDF
    In vivo reprogramming of somatic cells into induced pluripotent stem cells (iPSC) holds vast potential for basic research and regenerative medicine. However, it remains hampered by a need for vectors to express reprogramming factors (Oct-3/4, Klf4, Sox2, c-Myc; OKSM) in selected organs. Here, we report OKSM delivery vectors based on pseudotyped Adeno-associated virus (AAV). Using the AAV-DJ capsid, we could robustly reprogram mouse embryonic fibroblasts with low vector doses. Swapping to AAV8 permitted to efficiently reprogram somatic cells in adult mice by intravenous vector delivery, evidenced by hepatic or extra-hepatic teratomas and iPSC in the blood. Notably, we accomplished full in vivo reprogramming without c-Myc. Most iPSC generated in vitro or in vivo showed transcriptionally silent, intronic or intergenic vector integration, likely reflecting the increased host genome accessibility during reprogramming. Our approach crucially advances in vivo reprogramming technology, and concurrently facilitates investigations into the mechanisms and consequences of AAV persistence.We kindly acknowledge support of this work by the German Research Foundation (DFG, EXC81 (Cluster of Excellence CellNetworks) to E.S., E.W. and D.G.; SFB1129 (Collaborative Research Center 1129, TP2) to D.G. and H.L.; and TRR179 (Transregional Collaborative Research Center 179, TP18) to D.G.). E.S. and D.G. acknowledge further support by the Helmholtz Initiative for Synthetic Biology. E.S. is grateful to the Heidelberg University Graduate Academy for a PhD completion grant to the Heidelberg Biosciences International Graduate School (HBIGS) at Heidelberg University for support and to the Spanish Association Against Cancer (AECC) for a postdoctoral fellowship. L.M. was a recipient of a FPU contract from the Spanish Ministry of Education (MECD). M.A. is grateful for support from the Ministry of Economy (MINECO, SAF2015-69413- R). Work in the laboratory of M.S. (CNIO) was funded by the CNIO, and by grants from the MECD cofunded by the European Regional Development Fund (SAF project) and from the European Research Council (ERC Advanced Grant). M.S. (NCT) acknowledges support by grants NCT3.0_2015.13 ImmunOmics and NCT3.0_2015.2 SPL/RP. E.S. and D.G. thank A. Grewenig for providing MEF, A. Schambach for providing the lentiviral OKSM expression plasmid and viral stocks derived thereof, K. Börner and D. Gadella for fluorophore-containing plasmids, and E. Kienle for providing the AAV tyrosine mutants. We moreover thank various members of the Abad, Schmidt, Serrano and Grimm groups for critical reading of the manuscript.S

    p21Cip1 plays a critical role in the physiological adaptation to fasting through activation of PPARα

    Get PDF
    We are grateful to Orlando Dominguez for excellent technical assistance. We also thank Gema Iglesias for animal handling. E.L.-G. was recipient of a predoctoral contract from the Spanish Ministry of Education. P.J.F.-M. has been funded by the Spanish Association Against Cancer (aecc). Work in the laboratory of M.S. is funded by the CNIO and by grants from the Spanish Ministry of Economy co-funded by the European Regional Development Fund (SAF project), the European Research Council (ERC Advanced Grant), the Regional Government of Madrid co-funded by the European Social Fund (ReCaRe project), the Botin Foundation and Banco Santander (Santander Universities Global Division), the Ramon Areces Foundation, and the AXA Foundation.Fasting is a physiological stress that elicits well-known metabolic adaptations, however, little is known about the role of stress-responsive tumor suppressors in fasting. Here, we have examined the expression of several tumor suppressors upon fasting in mice. Interestingly, p21 mRNA is uniquely induced in all the tissues tested, particularly in liver and muscle (>10 fold), and this upregulation is independent of p53. Remarkably, in contrast to wild-type mice, p21-null mice become severely morbid after prolonged fasting. The defective adaptation to fasting of p21-null mice is associated to elevated energy expenditure, accelerated depletion of fat stores, and premature activation of protein catabolism in the muscle. Analysis of the liver transcriptome and cell-based assays revealed that the absence of p21 partially impairs the transcriptional program of PPARα, a key regulator of fasting metabolism. Finally, treatment of p21-null mice with a PPARα agonist substantially protects them from their accelerated loss of fat upon fasting. We conclude that p21 plays a relevant role in fasting adaptation through the positive regulation of PPARα

    Common Telomere Changes during In Vivo Reprogramming and Early Stages of Tumorigenesis

    No full text
    Reprogramming of differentiated cells into induced pluripotent stem cells has been recently achieved in vivo in mice. Telomeres are essential for chromosomal stability and determine organismal life span as well as cancer growth. Here, we study whether tissue dedifferentiation induced by in vivo reprogramming involves changes at telomeres. We find telomerase-dependent telomere elongation in the reprogrammed areas. Notably, we found highly upregulated expression of the TRF1 telomere protein in the reprogrammed areas, which was independent of telomere length. Moreover, TRF1 inhibition reduced in vivo reprogramming efficiency. Importantly, we extend the finding of TRF1 upregulation to pathological tissue dedifferentiation associated with neoplasias, in particular during pancreatic acinar-to-ductal metaplasia, a process that involves transdifferentiation of adult acinar cells into ductal-like cells due to K-Ras oncogene expression. These findings place telomeres as important players in cellular plasticity both during in vivo reprogramming and in pathological conditions associated with increased plasticity, such as cancer.We are indebted to R. Serrano for expert mouse colony manage- ment and the Comparative Pathology Unit at CNIO for technical assistance. We are grateful to Dr. Ana Losada for providing us with SA1 antibody. We thank Ana Carolina Moises da Silva for her assistance in setting-up RNA-FISH experiments. Work in the laboratory of M.A.B. is funded by the Spanish Ministry of Economy and Competiveness (PLAN RETOS SAF2013-45111-R) and by the Fundacion Botın.S

    PTEN mediates Notch-dependent stalk cell arrest in angiogenesis

    Get PDF
    Coordinated activity of VEGF and Notch signals guides the endothelial cell (EC) specification into tip and stalk cells during angiogenesis. Notch activation in stalk cells leads to proliferation arrest via an unknown mechanism. By using gain- and loss-of-function gene-targeting approaches, here we show that PTEN is crucial for blocking stalk cell proliferation downstream of Notch, and this is critical for mouse vessel development. Endothelial deletion of PTEN results in vascular hyperplasia due to a failure to mediate Notch-induced proliferation arrest. Conversely, overexpression of PTEN reduces vascular density and abrogates the increase in EC proliferation induced by Notch blockade. PTEN is a lipid/protein phosphatase that also has nuclear phosphatase-independent functions. We show that both the catalytic and non-catalytic APC/C-Fzr1/Cdh1-mediated activities of PTEN are required for stalk cells' proliferative arrest. These findings define a Notch-PTEN signalling axis as an orchestrator of vessel density and implicate the PTEN-APC/C-Fzr1/Cdh1 hub in angiogenesis.We thank Ramon Parsons (The Mount Sinai Hospital, NY, US) for pGL3 PTEN HindIII-NotI construct and Lluis Espinosa (IMIM, Barcelona), Alba Martinez (Research Laboratory, Catalan Institute of Oncology, IDIBELL, Barcelona) and Magali Castells (Vascular Signalling laboratory, IDIBELL) for support with experiments. This work was supported by research grants SAF2010-15661 and SAF2013-46542-P from MICINN (Spain), 2014-SGR-725 from the Catalan Government, from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013/(REA grant agreement 317250) and Ajuts Joves Investigadors from IDIBELL to M.G., and SAF2013-40922 and RD12/0036/0054 to A.B. Personal support was from FPI of the Spanish Ministry of Education (A.S.), IDIBELL (H.S.) and Ramon y Cajal fellow of the Spanish Ministry of Education (M.G. and O.C.). The work of A.C. is supported by the Ramon y Cajal award, the Basque Department of Industry, Tourism and Trade (Etortek), health (2012111086) and education (PI2012-03), Marie Curie (277043), Movember, ISCIII (PI10/01484, PI13/00031) and ERC (336343). The work of M.P. is supported by the Max Planck Society, the Deutsche Forschungsgemeinschaft (SFB 834) and an ERC Starting Grant (ANGIOMET). H.G. is supported by Cancer Research UK, the Lister Institute of Preventive Medicine, the Leducq Network Grant ARTEMIS, BIRAX and an ERC starting grant Reshape 311719.S
    corecore