1,098 research outputs found

    Action recognition and understanding using motor primitives

    Get PDF
    Abstract — We investigate modeling and recognition of arm manipulation actions of different levels of complexity. To model the process, we are using a combination of discriminative support vector machines and generative hidden Markov models. The experimental evaluation, performed with 10 people, investigates both definition and structure of primitive motions as well as the validity of the modeling approach taken. I

    Deep temperatures in the Paris Basin using tectonic-heat flow modelling

    No full text
    International audienceThe determination of deep temperatures in a basin is one of the key parameters in the exploration of geothermal energy. This study, carried out as part of the CLASTIQ-2 project, presents a 3 temperatures in the Paris Basin derived through a thermal-tectonic forward modelling method, calibrated using subsurface temperature values. The temperature dataset required for the calibration was compiled in 2007 as part of the CLASTIQ-1 project. The temperature measurement dataset is largely composed of BHT (some 2443 values). These BHT measurements required correction due to the thermal disturbance created during drilling. After correction, which was carried out using the Instantaneous Cylinder Source (ICS) method, 494 corrected BHT (BHTx) values were available for the modelling of the Paris Basin. In addition to these BHTx, some 15 DST measurements that are considered as close to the thermal equilibrium (i.e., ±5°C) were added to the temperature calibration values. According to this dataset of BHTx and DST, the average gradient in the Paris Basin was calculated as 34.9°C/km when the surface temperature is fixed at 10°C. The temperature values collected were then used to calibrate the tectonic-heat flow modelling. The model was computed at the lithospheric scale but focused on the temperature field in the sedimentary basin fill. The model takes into account the geodynamic evolution of the last 20 My, the heat production, and the specific heat conduction of each defined sedimentary layer. The result is a 3D thermal block that is presented in the form of isodepth maps. The results are strongly influenced by thermal conductivity variations such as those due to differences in sediment composition while faults create some more localised influences. The presence of anomalously radiogenic bodies beneath the basin, and/or by variations in lithosphere thickness resulting in possible heat production anomalies strongly influence the thermal variations the Paris Basin. The Alpine Orogeny created a slight temperature increase in the south-eastern part of the basin and inhomogeneities in the lithology of the basement generating additional sources of variation in the sedimentary pil

    Gelatin-tyramine addition and low hydrogel density improves cell attachment, migration, and metabolic activity in vitro and tissue response in vivo in enzymatically crosslinkable dextran-hyaluronic acid hydrogels

    Get PDF
    Hydrogels are receiving increasing attention for their use in 3D cell culture, tissue engineering, and bioprinting applications. Each application places specific mechanical and biological demands on these hydrogels. We developed a hydrogel toolbox based on enzymatically crosslinkable polysaccharides via tyramine (TA) moieties, allowing for rapid and tunable crosslinking with well-defined stiffness and high cell viability. Including gelatin modified with TA moieties (Gel-TA) improved the hydrogels' biological properties; 3 T3 fibroblasts and HUVECs attached to and proliferated on the enriched hydrogels at minute Gel-TA concentrations, in contrast to bare or unmodified gelatin-enriched hydrogels. Moreover, we were able to switch HUVECs from a quiescent to a migratory phenotype simply by altering the ligand concentration, demonstrating the potential to easily control cell fate. In encapsulation studies, Gel-TA significantly improved the metabolic activity of 3 T3 fibroblasts in soft hydrogels. Furthermore, we showed rapid migration and network formation in Gel-TA enriched hydrogels in contrast to a non-migratory behavior in non-enriched polysaccharide hydrogels. Finally, low hydrogel density significantly improves tissue response in vivo with large infiltration and low fibrotic reaction. Further development by adding ECM proteins, peptides, and growth factor adhesion sites will lead to a toolbox for hydrogels tailored toward their desired application.</p

    A review of technologies for closing the P loop in agriculture runoff: contributing to the transition towards a circular economy

    Get PDF
    Phosphorus (P) scarcity and the environmental hazards posed by P discharges have triggered the development of technologies for P sequestration and removal from waste streams. Agriculture runoff usually has P concentrations high enough to contribute to eutrophication and harmful algal blooms, but they are still too low for successful P removal with conventional technologies commonly applied in wastewater treatment. For this reason, realistic approaches to remove P from agricultural waste streams mainly include natural assimilation and constructed wetlands. Although these technologies have been implemented for some time, P removal is not always achieved to the needed extent and sometimes sufficient surface areas required are unattainable. Phosphorus sorbing materials, especially materials rich in calcium, have emerged to increase the removal potential of runoff treatment wetlands and at the same time sequester P for potential subsequent reuse. This paper analyses the current strategies and technologies for P removal and reuse from agriculture surface runoff streams taking a circular economy approach. It particularly addresses the current state of calcium rich materials commonly used for P removal that have also shown positive results as fertilizers or soil.This work has been possible thanks to the European funding programme “Iniciativa de Empleo Juvenil” and the Spanish Ministry of Science and Innovation (project reference: PEJ2018-005586-A).Peer ReviewedPostprint (published version

    Antimony nanomaterials modified screen-printed electrodes for the voltammetric determination of metal ions

    Full text link
    Exfoliated β-Sb or two dimensional (2D) antimonene-based modified screen-printed electrode (2D Sb-SPCE), prepared by drop-casting of an exfoliated layered β-antimony (2D Sb) suspension, was used for the simultaneous determination of Pb(II) and Cd(II) by differential pulse anodic stripping voltammetry (DPASV). 2D Sb-SPCE was characterized by microscopic and analytical techniques, and compared not only to bare SPCE but also to layered antimony chalcogenides based-sensors. Both Sb2S3 and Sb2Se3 have an isomorphous tubular one-dimensional (1D) crystal structure, whereas Sb2Te3 and monoelement β-Sb have a 2D layered structure. Under optimized conditions, 2D Sb-SPCE displays an excellent analytical performance with detection limits of 0.3 and 2.7 μg L−1 for Pb(II) and Cd(II), respectively, and a linear response from 1.1 to 128.3 µg L−1 for Pb(II) and from 9.1 to 132.7 µg L−1 for Cd(II). Moreover, 2D Sb-SPCE was successfully applied for the DPASV determination of Pb(II) and Cd(II) in tap water, achieving statistically comparable results to those provided by ICP-MS measurements

    Social support and health in diabetes patients: an observational study in six European countries in an era of austerity

    Get PDF
    Introduction: support from individual social networks, community organizations and neighborhoods is associated with better self-management and health outcomes. This international study examined the relative impact of different types of support on health and health-related behaviors in patients with type 2 diabetes.Methods: observational study (using interviews and questionnaires) in a sample of 1,692 type 2 diabetes patients with 5,433 connections from Bulgaria, Greece, Netherlands, Norway, Spain, and the United Kingdom. Outcomes were patient-reported health status (SF-12), physical exercise (RAPA), diet and smoking (SDCSCA). Random coefficient regression models were used to examine linkages with individual networks, community organizations, and neighborhood type (deprived rural, deprived urban, or affluent urban).Results: patients had a median of 3 support connections and 34.6% participated in community organizations. Controlled for patients’ age, sex, education, income and comorbidities, large emotional support networks were associated with decrease of non-smoking (OR = 0.87). Large practical support networks were associated with worse physical and mental health (B = -0.46 and -0.27 respectively) and less physical activity (OR = 0.90). Participation in community organizations was associated with better physical and mental health (B = 1.39 and 1.22, respectively) and, in patients with low income, with more physical activity (OR = 1.53).Discussion: participation in community organizations was most consistently related to better health status. Many diabetes patients have individual support networks, but this study did not provide evidence to increase their size as a public health strategy. The consistent association between participation in community organizations and health status provides a clear target for interventions and policie

    Functional properties of the human ventral mesencephalic neural stem cell line hVM1.

    Get PDF
    The human fetal ventral mesencephalon-derived stem cell line, hVM1, yields high number of tyrosine hydroxylase-expressing presumed dopaminergic neurons upon in vitro differentiation. Here we report that cells generated from this line differentiate into a neuronal phenotype, express electrophysiological properties of functional neurons and respond to neurotransmitters in vitro. However, the electrophysiological properties are immature and the cells require longer maturation time than possible under in vitro condition

    Connectivity, contest and the ties of self-management support for type 2 diabetes: a meta-synthesis of qualitative literature

    No full text
    This paper presents a meta-synthesis of the literature on community-based self-management to support experiences of people diagnosed with type 2 diabetes. The aim was to synthesise findings on both formal and informal self-management support with particular reference to the relevance and influence of the social context operating at different levels. The review forms part of EU-WISE, a project financed through EU's 7th Framework Programme. The review was performed by systematically searching MEDLINE, PubMed, EMBASE, CINAHL, PsycINFO and Web of Science for English language publications between 2005 and 2014 presenting research conducted in Europe on the experiences and perspectives of self-management concerns of patients diagnosed with type 2 diabetes. The search yielded 587 abstracts, which were reduced through search strategy refinement and eligibility and quality criteria to 29 papers that were included in the review. This review highlights the relevance of contextual factors operating at micro- and macro-levels. The synthesis yielded six second-order thematic constructs relating to self-management: sense of agency and identity, the significance and meaning of social networks, minimal disruption of everyday life, economic hardship, the problem of assigning patients' responsibility and structural influences of primary care. Using a line of argument synthesis, these themes were revisited, and a third-order construct, connectivity emerged which refers to how links in daily life are interwoven with peoples' social networks, local communities, economic and ideological conditions in society in a way which support self-management activities. This meta-synthesis indicates a need to heed the notion of connectivity as a means of mobilising and supporting the self-management strategies of people with type 2 diabetes in everyday life

    Three dimensional magnetic nanowires grown by focused electron-beam induced deposition

    Get PDF
    Control of the motion of domain walls in magnetic nanowires is at the heart of various recently proposed three-dimensional (3D) memory devices. However, fabricating 3D nanostructures is extremely complicated using standard lithography techniques. Here we show that highly pure 3D magnetic nanowires with aspect-ratios of ~100 can be grown using focused electron-beam-induced-deposition. By combining micromanipulation, Kerr magnetometry and magnetic force microscopy, we determine that the magnetisation reversal of the wires occurs via the nucleation and propagation of domain walls. In addition, we demonstrate that the magnetic switching of individual 3D nanostructures can be directly probed by magneto-optical Kerr effect
    corecore