7,332 research outputs found

    A new intermediate mass protostar in the Cepheus A HW2 region

    Get PDF
    We present the discovery of the first molecular hot core associated with an intermediate mass protostar in the CepA HW2 region. The hot condensation was detected from single dish and interferometric observations of several high excitation rotational lines (from 100 to 880K above the ground state) of SO2 in the ground vibrational state and of HC3N in the vibrationally excited states v7=1 and v7=2. The kinetic temperature derived from both molecules is 160K. The high-angular resolution observations (1.25'' x 0.99'') of the SO2 J=28(7,21)-29(6,24) line (488K above the ground state) show that the hot gas is concentrated in a compact condensation with a size of 0.6''(430AU), located 0.4'' (300AU) east from the radio-jet HW2. The total SO2 column density in the hot condensation is 10E18cm-2, with a H2 column density ranging from 10E23 to 6 x 10E24cm-2. The H2 density and the SO2 fractional abundance must be larger than 10E7cm-3 and 2 x 10E-7 respectively. The most likely alternatives for the nature of the hot and very dense condensation are discussed. From the large column densities of hot gas, the detection of the HC3N vibrationally excited lines and the large SO2 abundance, we favor the interpretation of a hot core heated by an intermediate mass protostar of 10E3 Lo. This indicates that the CepA HW2 region contains a cluster of very young stars

    L'afer de Glozel

    Get PDF

    La immigració a Catalunya

    Get PDF

    Bibliografia

    Get PDF

    From Coulomb blockade to the Kondo regime in a Rashba dot

    Get PDF
    We investigate the electronic transport in a quantum wire with localized Rashba interaction. The Rashba field forms quasi-bound states which couple to the continuum states with an opposite spin direction. The presence of this Rashba dot causes Fano-like antiresonances and dips in the wire's linear conductance. The Fano lineshape arises from the interference between the direct transmission channel along the wire and the hopping through the Rashba dot. Due to the confinement, we predict the observation of large charging energies in the local Rashba region which lead to Coulomb-blockade effects in the transport properties of the wire. Importantly, the Kondo regime can be achieved with a proper tuning of the Rashba interaction, giving rise to an oscillating linear conductance for a fixed occupation of the Rashba dot.Comment: 6 pages, 3 figures; presentation improved, discussions extended. Published versio

    Gas Kinematics and Excitation in the Filamentary IRDC G035.39-00.33

    Full text link
    Some theories of dense molecular cloud formation involve dynamical environments driven by converging atomic flows or collisions between preexisting molecular clouds. The determination of the dynamics and physical conditions of the gas in clouds at the early stages of their evolution is essential to establish the dynamical imprints of such collisions, and to infer the processes involved in their formation. We present multi-transition 13CO and C18O maps toward the IRDC G035.39-00.33, believed to be at the earliest stages of evolution. The 13CO and C18O gas is distributed in three filaments (Filaments 1, 2 and 3), where the most massive cores are preferentially found at the intersecting regions between them. The filaments have a similar kinematic structure with smooth velocity gradients of ~0.4-0.8 km s-1 pc-1. Several scenarios are proposed to explain these gradients, including cloud rotation, gas accretion along the filaments, global gravitational collapse, and unresolved sub-filament structures. These results are complemented by HCO+, HNC, H13CO+ and HN13C single-pointing data to search for gas infall signatures. The 13CO and C18O gas motions are supersonic across G035.39-00.33, with the emission showing broader linewidths toward the edges of the IRDC. This could be due to energy dissipation at the densest regions in the cloud. The average H2 densities are ~5000-7000 cm-3, with Filaments 2 and 3 being denser and more massive than Filament 1. The C18O data unveils three regions with high CO depletion factors (f_D~5-12), similar to those found in massive starless cores.Comment: 20 pages, 14 figures, 6 tables, accepted for publication in MNRA

    Foreword

    Get PDF

    Mid-J CO Shock Tracing Observations of Infrared Dark Clouds I

    Get PDF
    Infrared dark clouds (IRDCs) are dense, molecular structures in the interstellar medium that can harbour sites of high-mass star formation. IRDCs contain supersonic turbulence, which is expected to generate shocks that locally heat pockets of gas within the clouds. We present observations of the CO J = 8-7, 9-8, and 10-9 transitions, taken with the Herschel Space Observatory, towards four dense, starless clumps within IRDCs (C1 in G028.37+00.07, F1 and F2 in G034.43+0007, and G2 in G034.77-0.55). We detect the CO J = 8-7 and 9-8 transitions towards three of the clumps (C1, F1, and F2) at intensity levels greater than expected from photodissociation region (PDR) models. The average ratio of the 8-7 to 9-8 lines is also found to be between 1.6 and 2.6 in the three clumps with detections, significantly smaller than expected from PDR models. These low line ratios and large line intensities strongly suggest that the C1, F1, and F2 clumps contain a hot gas component not accounted for by standard PDR models. Such a hot gas component could be generated by turbulence dissipating in low velocity shocks.Comment: 14 pages, 8 figures, 5 tables, accepted by A&A, minor updates to match the final published versio

    Towards a Full Census of the Obscure(d) Vela Supercluster using MeerKAT

    Full text link
    Recent spectroscopic observations of a few thousand partially obscured galaxies in the Vela constellation revealed a massive overdensity on supercluster scales straddling the Galactic Equator (l ∼\sim 272.5deg) at cz∼18000cz \sim 18000km/s. It remained unrecognised because it is located just beyond the boundaries and volumes of systematic whole-sky redshift and peculiar velocity surveys - and is obscured by the Milky Way. The structure lies close to the apex where residual bulkflows suggest considerable mass excess. The uncovered Vela Supercluster (VSCL) conforms of a confluence of merging walls, but its core remains uncharted. At the thickest foreground dust column densities (|b| < 6 deg) galaxies are not visible and optical spectroscopy is not effective. This precludes a reliable estimate of the mass of VSCL, hence its effect on the cosmic flow field and the peculiar velocity of the Local Group. Only systematic HI-surveys can bridge that gap. We have run simulations and will present early-science observing scenarios with MeerKAT 32 (M32) to complete the census of this dynamically and cosmologically relevant supercluster. M32 has been put forward because this pilot project will also serve as precursor project for HI MeerKAT Large Survey Projects, like Fornax and Laduma. Our calculations have shown that a survey area of the fully obscured part of the supercluster, where the two walls cross and the potential core of the supercluster resides, can be achieved on reasonable time-scales (200 hrs) with M32.Comment: 10 pages, 3 figures, accepted for publication, Proceedings of Science, workshop on "MeerKAT Science: On the Pathway to the SKA", held in Stellenbosch 25-27 May 201

    Diagnosing shock temperature with NH3_3 and H2_2O profiles

    Get PDF
    In a previous study of the L1157 B1 shocked cavity, a comparison between NH3_3(10_0-000_0) and H2_2O(110_{\rm 10}--101_{\rm 01}) transitions showed a striking difference in the profiles, with H2_2O emitting at definitely higher velocities. This behaviour was explained as a result of the high-temperature gas-phase chemistry occurring in the postshock gas in the B1 cavity of this outflow. If the differences in behaviour between ammonia and water are indeed a consequence of the high gas temperatures reached during the passage of a shock, then one should find such differences to be ubiquitous among chemically rich outflows. In order to determine whether the difference in profiles observed between NH3_3 and H2_2O is unique to L1157 or a common characteristic of chemically rich outflows, we have performed Herschel-HIFI observations of the NH3_3(10_0-00_0) line at 572.5 GHz in a sample of 8 bright low-mass outflow spots already observed in the H2_2O(110_{\rm 10}--101_{\rm 01}) line within the WISH KP. We detected the ammonia emission at high-velocities at most of the outflows positions. In all cases, the water emission reaches higher velocities than NH3_3, proving that this behaviour is not exclusive of the L1157-B1 position. Comparisons with a gas-grain chemical and shock model confirms, for this larger sample, that the behaviour of ammonia is determined principally by the temperature of the gas.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Societ
    • …
    corecore