286 research outputs found

    ECOLOGICAL TABLE GRAPE PRODUCTION IN TURKEY

    Get PDF
    The organic (ecologic-biologic) agricultural practices in Turkey began in 1985 with organic raisins and dried figs demand of European countries. As of 2015, 1829291 tons of organic products from 197 different products, which comprise grapes, in 515268 ha, are produced by 69967 farmers. Currently, the number of registered enterprises operating in organic agriculture is over 1500. As in the entire in world and in Turkey, the share of organic production in grape production is increasing. Organic grape production is carried out in 10645 ha area in Turkey. This amount constitutes approximately 2.3% of the total grape production area in Turkey. Organic grape is the second major product of Turkey export, and the export share of organic products in recent years is increased to 20-30%. The share of the organic table grape production in total organic grape production is an increasing trend and the studies in this direction are continuing

    Identification of Peptide Ligands for Targeting to the Blood-Brain Barrier

    Get PDF
    PurposeTransport of drugs to the brain is limited by the blood-brain barrier. New, specific brain endothelium ligands can facilitate brain-specific delivery of drugs. MethodsWe used phage display in an in situ brain perfusion model to screen for new brain endothelium peptide ligands. ResultsTwo phage clones, displaying 15 amino acid-peptides (GLA and GYR) that were selected for brain binding in the mouse model, showed significant binding to human brain endothelium (hCMEC/D3), compared to a random control phage. This binding was not seen for other human endothelial cells (HUVEC). Binding to hCMEC/D3 cells was dose dependent. When phage GLA and GYR were individually perfused through the murine brain, their ability to bind to the brain was 6-fold (GLA) and 5-fold (GYR) higher than the control phage. When compared to lung perfusion, phage showed an 8.5-fold (GYR) and 48-fold (GLA) preference for brain over lung compared to the control. ConclusionsThese results indicate that two new peptide ligands have been identified that may be used for specific targeting of drugs to the blood-brain barrier

    A novel method for pulmonary research: Assessment of bioenergetic function at the air–liquid interface

    Get PDF
    AbstractAir–liquid interface cell culture is an organotypic model for study of differentiated functional airway epithelium in vitro. Dysregulation of cellular energy metabolism and mitochondrial function have been suggested to contribute to airway diseases. However, there is currently no established method to determine oxygen consumption and glycolysis in airway epithelium in air–liquid interface. In order to study metabolism in differentiated airway epithelial cells, we engineered an insert for the Seahorse XF24 Analyzer that enabled the measure of respiration by oxygen consumption rate (OCR) and glycolysis by extracellular acidification rate (ECAR). Oxidative metabolism and glycolysis in airway epithelial cells cultured on the inserts were successfully measured. The inserts did not affect the measures of OCR or ECAR. Cells under media with apical and basolateral feeding had less oxidative metabolism as compared to cells on the inserts at air-interface with basolateral feeding. The design of inserts that can be used in the measure of bioenergetics in small numbers of cells in an organotypic state may be useful for evaluation of new drugs and metabolic mechanisms that underlie airway diseases

    Biomarker-based asthma phenotypes of corticosteroid response

    Get PDF
    BackgroundAsthma is a heterogeneous disease with different phenotypes. Inhaled corticosteroid (ICS) therapy is a mainstay of treatment for asthma, but the clinical response to ICSs is variable.ObjectiveWe hypothesized that a panel of inflammatory biomarkers (ie, fraction of exhaled nitric oxide [Feno], sputum eosinophil count, and urinary bromotyrosine [BrTyr] level) might predict steroid responsiveness.MethodsThe original study from which this analysis originates comprised 2 phases: a steroid-naive phase 1 and a 28-day trial of ICSs (phase 2) during which Feno values, sputum eosinophil counts, and urinary BrTyr levels were measured. The response to ICSs was based on clinical improvements, including a 12% or greater increase in FEV1, a 0.5-point or greater decrease in Asthma Control Questionnaire score, and 2 doubling dose or greater increase in provocative concentration of adenosine 5′-monophosphate causing a 20% decrease in FEV1 (PC20AMP). Healthy control subjects were also evaluated in this study for comparison of biomarkers with those seen in asthmatic patients.ResultsAsthmatic patients had higher than normal Feno values, sputum eosinophil counts, and urinary BrTyr levels during the steroid-naive phase and after ICS therapy. After 28-day trial of ICSs, Feno values decreased in 82% of asthmatic patients, sputum eosinophil counts decreased in 60%, and urinary BrTyr levels decreased in 58%. Each of the biomarkers at the steroid-naive phase had utility for predicting steroid responsiveness, but the combination of high Feno values and high urinary BrTyr levels had the best power (13.3-fold, P < .01) to predict a favorable response to ICS therapy. However, the magnitude of the decrease in biomarker levels was unrelated to the magnitude of clinical response to ICS therapy.ConclusionA noninvasive panel of biomarkers in steroid-naive asthmatic patients predicts clinical responsiveness to ICS therapy

    HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma

    Get PDF
    Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3β-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    The imperative to invest in science has never been greater

    Get PDF
    In order to sustain and improve the health of Americans, to ensure our ability to overcome new health challenges, and to realize the economic benefits of a vigorous scientific economy, we encourage our government to implement three actions. First, establish predictable, managed growth in the US scientific enterprise by establishing a sustainable and predictable real annual increase in science funding. This will require additional investments in the proven NIH-university partnership to maintain our world-leading position in biomedical science. Second, preserve the current cadre of well-trained junior scientists, including physician-scientists, and maintain a pipeline of young scientists motivated to innovate and improve health. Third, analyze changing health needs and priorities for health science–related investments in order to address ongoing shifts in population demographics and diseases, opportunities for improved prevention or treatment, and the availability of new scientific tools and disciplines. It is in the nation’s best interests -- for good health, for a robust economy, and for scientific leadership -- to advocate for strong federal support of biomedical science in America’s great research universities. Translation of this science yields enormous benefits to our nation’s health and to the economy

    Complement C3 Deficiency Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension in Mice

    Get PDF
    Background: Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension. Methodology/Principal Findings: Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice. Conclusions: Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans. © 2011 Bauer et al
    corecore