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Abstract
In this paper, we consider the Horadam sequence and some summation formulas
involving the terms of the Horadam sequence. We derive combinatorial identities by
using the trace, the determinant and the nth power of a special matrix.
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1 Introduction and preliminaries
The generalized Fibonacci sequenceWn =Wn(a,b;p,q) is defined as follows:

Wn = pWn– – qWn–, W = a, W = b, ()

where a, b, p and q are arbitrary complex numbers with q �= . Since these numbers were
first studied by Horadam (see, e.g., []), they are called Horadam numbers. Some special
cases of this sequence such as

Un =Wn(, ;p,q), Vn =Wn(,p;p,q) ()

were investigated by Lucas []. Further and detailed knowledge can be found in [–] and
[]. If α, β , assumed to be distinct, are the roots of

λ – pλ + q = , ()

then the sequenceWn has the Binet representation

Wn =
Aαn – Bβn

α – β
, ()

where A = b – aβ and B = b – aα. For negative indices, the definition is

W–n =
pW–n+ –W–n+

q
.

So, for all integers n, we can write

Wn = pWn– – qWn–; W = a, W = b. ()
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In [], the authors used the matrix in relation to the recurrence relation ()

M =

(
p –q
 

)
. ()

Indeed, if p =  and q = –, then the matrix M reduces to the Fibonacci Q-matrix. The
matrix M is a special case of the general k × k, Q-matrix []. Now, we use a new matrix
A and its powers to prove and drive some combinatorial identities involving terms from
the sequence {Wn}. Such identities are quite extensive in the literature, but we use only
the trace and the determinant of the matrix A for this purpose. In [], Laughlin gave a
new formula for the nth power of a ×  matrix. The author proved that if B =

( a b
c d

)
is an

arbitrary ×  matrix, then for n≥ , Bn is

Bn =

(
yn – dyn– byn–
cyn– yn – ayn–

)
; yn =

� n �∑
i=

(
n – i
i

)
Tn–i(–D)i, ()

where T and D are the trace and the determinant of the matrix B, respectively. In [],
Williams gave a formula for the nth power of any ×  matrix C with eigenvalues α and
β as follows:

Cn =

{
αn(C–βI)–βn(C–αI)

α–β
; α �= β ,

αn–(nC – (n – )αI); α = β .
()

In [], Belbachir extended this result to any matrix A of orderm,m ≥ . He also derived
some identities concerning the Stirling numbers. In [], some new properties of Lucas
numbers with binomial coefficients are given. In the recent years, in [], the authors de-
fined the following ×  Lucas QL matrix:

QL =

(
 
 

)

and obtained relations between the Fibonacci Q-matrix and the Lucas QL matrix.
In this study, we define the matrix A by

A =

(
p – q p
–qp –q

)
.

Then, we derive a formula giving the nth power of this  ×  matrix so that its entries
involve the generalized Fibonacci and Lucas numbers. We give some identities using this
matrix.

2 Some combinatorial identities involving the terms of Horadam sequence
In this section,we derive various combinatorial identities using the equations in () and the
matrix A. By means of the nth power of the matrix A, we obtain the Cassini-like formula
for the generalized Fibonacci and Lucas numbers and give a few different identities.
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Theorem . For n ≥ , we have the following identity:

An =

⎧⎨
⎩ (p – q)

n–


( Vn+ Vn
–qVn –qVn–

)
, n odd,

(p – q)
n

( Un+ Un
–qUn –qUn–

)
, n even.

()

Proof The proof is by induction. For n =  and n = , equation () is seen to be true. As-
sume that the theorem is true for n = k. That is,

Ak =

⎧⎨
⎩ (p – q)

k–


( Vk+ Vk
–qVk –qVk–

)
, k odd,

(p – q)
k

( Uk+ Uk
–qUk –qUk–

)
, k even.

We consider the claim for n = k + . Firstly, assume that k is odd. Then

Ak+ = AkA =
(
p – q

) k–


(
Vk+ Vk

–qVk –qVk–

)(
p – q p
–qp –q

)
,

Ak+ =
(
p – q

) k–


(
pVk+ – qVk+ – qpVk pVk+ – qVk

–qpVk + qVk + pqVk– –pqVk + qVk–

)
.

()

If we examine all the elements of thematrix in () and use the identityVn+ –qVn– = �Un

in [], then the (, ) element of this matrix is as follows:

pVk+ – qVk+ – qpVk = pVk+ – qVk+ – qVk+ = Vk+ – qVk+.

So, we can write pVk+ – qVk+ – qpVk = �Uk+, where � = p – q. The (, ) element
of the matrix in () is

–qpVk + qVk + pqVk– = –qp(pVk – qVk–) + qVk

= –qpVk+ + qVk + qVk = –q(pVk+ – qVk) + qVk .

Hence, we can write –qpVk +qVk +pqVk– = –q(Vk+ – qVk) = –q�Uk+. Similarly, the
equations provided by the elements (, ) and (, ) of this matrix can be easily written.
When k is even, the proof can be easily seen. Thus, the proof is completed. �

It is noted that Theorem . generalizes the work in the reference []. If we write  and
– instead of p and q in the matrix A, then the matrix A reduces to the Lucas matrix QL

in []. Therefore, we can give the following corollary.

Corollary  For n≥ , we have the following identity:

An =

{
 n–


( Ln+ Ln

Ln Ln–

)
, n odd,

 n

( Fn+ Fn

Fn Fn–

)
, n even.

()

Proof If we write p = , q = – in Theorem ., then we get A =
(  
 

)
. Thus, the result

follows. Also, if we take p = , q = – in Theorem ., then we get A =
(  
 

)
, and

An =

{
 n–


(Qn+ Qn

Qn Qn–

)
, n odd,

 n

( Pn+ Pn

Pn Pn–

)
, n even,

()
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where Pn and Qn are the Pell and Pell-Lucas numbers, respectively. Therefore, we obtain
some identities related to the Pell and Pell-Lucas numbers. Similarly, we can get some
identities related to Jacobsthal and Jacobsthal-Lucas numbers. �

By the aid of the nth power of the matrix A, we can give the relationship between the
matrix A and the matrix R as in the following corollary.

Corollary  For A =
(  
 

)
and R =

(  
 –

)
, we have

Rn+An = n
(
Ln+ Ln
Ln Ln–

)
.

Proof Since RA = AR = Q, we write (RA)n = (Q)n, where Q =
(  
 

)
. Also, we can get

Rn+An = nRQn. Then we have

RQn =

(
Ln+ Ln
Ln Ln–

)
()

and

Rn+An = n
(
Ln+ Ln
Ln Ln–

)
. ()

It is noted that equation () can be found in []. Furthermore, we get

Rn =

{
n/I, n even,
(n–)/R, n odd. �

Hence, we canwrite the following identities by the aid of Corollary , which can be found
in []. Ifm and n are even numbers, then

Fm+n+ = Fm+Fn+ + FmFn,

Fm+n = Fm+Fn + FmFn–.

Ifm and n are odd numbers, then

Fm+n+ =


(Lm+Ln+ + LmLn),

Fm+n =


(Lm+Ln + LmLn–).

Note that these identities are given by using the matrix Q in [].

Lemma  For n,k ≥ , we have the following identity:

I =
n∑

k=

(
n
k

)
k–nAn–k .
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Proof Since

A =

(
p – q p
–qp –q

)
, � = p – q,

we can write A = �(I + qA–).When p = , q = –, if the necessary arrangements are made,
then the proof is completed. �

Now, using Theorem ., we can also give the following corollary without proof.

Corollary  (Cassini-like formula) For the sequences Un and Vn in equation (), we have

Vn+Vn– –V 
n = (–q)n–

(
p – q

)
, n odd,

Un+Un– –U
n = (–q)n–, n even.

Theorem . For odd and even numbers n≥ , we have the following identity:

Vn = �
n–


n∑
k=

(
n
k

)
qk–pyk–

and

Un = �
n–


n∑
k=

(
n
k

)
qk–pyk–,

respectively, where yk is as in equation ().

Proof If we use the binomial expression for the equation A = �(I + qA–), then we
can write An = �n ∑n

k=
( n
k
)
(q)kA–k . By using the equations in (), we can get A– =


–q�

( –q –p
qp p–q

)
and

(
A–)k =

(
yk – ( p

–q
–q� )yk– p

q�yk–
–p
�
yk– yk + 

�
yk–

)
,

yk =
� k �∑
i=

(
k – i
i

)
Tk–i(–D)i.

Here,T andD are the trace and the determinant of thematrixA–, respectively. If we write
A–k in the equation An = �n ∑n

k=
( n
k
)
(q)kA–k , then we get

An = �n
n∑

k=

(
n
k

)
(q)k

(
yk – ( p

–q
–q� )yk– p

q�yk–
–p
�
yk– yk + 

�
yk–

)
. ()

In the case of the odd n of Theorem ., if we equate the (, ) entries at () and (), then
we obtain

(
p – q

) n–
 Vn = �n

n∑
k=

(
n
k

)
(q)k

p
q�

yk– = �n–
n∑
k=

(
n
k

)
qk–pyk–.
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Since � = p – q, we get Vn = �
n–


∑n
k=

( n
k
)
qk–pyk–. Similarly, in the case of the even n

of Theorem ., if we equate the (, ) entries at () and (), then we obtain the desired
result, i.e.,

Un = �
n–
 p

n∑
k=

(
n
k

)
qk–yk–. �
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