143 research outputs found

    Early-Stage Waves in the Retinal Network Emerge Close to a Critical State Transition between Local and Global Functional Connectivity

    Get PDF
    A novel, biophysically realistic model for early-stage, acetylcholine-mediated retinal waves is presented. In this model, neural excitability is regulated through a slow after-hyperpolarization (sAHP) operating on two different temporal scales. As a result, the simulated network exhibits competition between a desynchronizing effect of spontaneous, cell-intrinsic bursts, and the synchronizing effect of synaptic transmission during retinal waves. Cell-intrinsic bursts decouple the retinal network through activation of the sAHP current, and we show that the network is capable of operating at a transition point between purely local and global functional connectedness, which corresponds to a percolation phase transition. Multielectrode array recordings show that, at this point, the properties of retinal waves are reliably predicted by the model. These results indicate that early spontaneous activity in the developing retina is regulated according to a very specific principle, which maximizes randomness and variability in the resulting activity patterns

    A super-resolution approach for receptive fields estimation of neuronal ensembles

    Get PDF
    International audienceThe Spike Triggered Average (STA) is a classical technique to find a discrete approximation of the Receptive Fields (RFs) of sensory neurons [1], a required analysis in most experimental studies. One important parameter of the STA is the spatial resolution of the estimation, corresponding to the size of the blocks of the checkerboard stimulus images. In general, it is experimentally fixed to reach a compromise: If too small, neuronal responses might be too weak thus leading to RF with low Signal-to-Noise-Ratio; on the contrary, if too large, small RF will be lost, or not described with enough details, because of the coarse approximation. Other solutions were proposed consisting in starting from a small block size and updating it following the neuron response in a closed-loop to increase its response [2; 3; 4]. However, these solutions were designed for single cells and cannot be applied to simultaneous recordings of ensembles of neurons (since each RF has its own size and preferred stimulus). To solve this problem, we introduced a modified checkerboard stimulus where blocks are shifted randomly in space at fixed time steps. This idea is inspired from super-resolution techniques developed in image processing [4]. The main interest is that the block size can be large, enabling strong responses, while the resolution can be finer since it depends on the shift minimum size. In [5] was shown that the STA remains an unbiased RF estimator and, using simulated spike trains from an ensemble of Linear Nonlinear Poisson cascade neurons, it was predicted that this approach improves RF estimation over the neuron ensemble. Here, we test these predictions experimentally on the RFs estimation of 8460 ganglion cells from two mouse retinas, using recordings performed with a large scale high-density multielectrode array. To illustrate the main interest of the approach, in Figure 1 we show a representative example of STA for one neuron where RFs have been obtained using the three following stimuli (all presented during 15min, for one retina displayed at 10 Hz, for the other at 30 Hz): (A) standard checkerboard stimulus with block size of 160ΞΌm, (B) standard checkerboard stimulus with block size of 40ΞΌm, (C) checkerboard stimulus with block size of 160ΞΌm and arbitrary shifts of 40ΞΌm in x and y-directions. Results show spatial resolution can be improved in case (C), while nothing could be obtained in (B) by changing only the block size of the standard stimulus. At the population level, plot (D) shows the number of the RFs that could be recovered for each stimuli, using a decision criteria based of the RFs value distribution. Most of the RFs were mapped with both methods (A) and (C) (49.9%). However, the proposed case (C) allows to recover 51% of the mapped RFs at a resolution of 40ΞΌm, while in the classical case (A), 41% of the RFs could be found at a resolution of only 160ΞΌm. Thus, the method does improve the quality of the RF estimation and the amount of successfully mapped RFs in neural ensembles

    Unsupervised Spike Sorting for Large-Scale, High-Density Multielectrode Arrays

    Get PDF
    We present a method for automated spike sorting for recordings with high-density, large-scale multielectrode arrays. Exploiting the dense sampling of single neurons by multiple electrodes, an efficient, low-dimensional representation of detected spikes consisting of estimated spatial spike locations and dominant spike shape features is exploited for fast and reliable clustering into single units. Millions of events can be sorted in minutes, and the method is parallelized and scales better than quadratically with the number of detected spikes. Performance is demonstrated using recordings with a 4,096-channel array and validated using anatomical imaging, optogenetic stimulation, and model-based quality control. A comparison with semi-automated, shape-based spike sorting exposes significant limitations of conventional methods. Our approach demonstrates that it is feasible to reliably isolate the activity of up to thousands of neurons and that dense, multi-channel probes substantially aid reliable spike sorting

    Refuting the challenges of the developmental shift of polarity of GABA actions: GABA more exciting than ever!

    Get PDF
    During brain development, there is a progressive reduction of intracellular chloride associated with a shift in GABA polarity: GABA depolarizes and occasionally excites immature neurons, subsequently hyperpolarizing them at later stages of development. This sequence, which has been observed in a wide range of animal species, brain structures and preparations, is thought to play an important role in activity-dependent formation and modulation of functional circuits. This sequence has also been considerably reinforced recently with new data pointing to an evolutionary preserved rule. In a recent 'Hypothesis and Theory Article', the excitatory action of GABA in early brain development is suggested to be "an experimental artefact" (Bregestovski and Bernard, 2012). The authors suggest that the excitatory action of GABA is due to an inadequate/insufficient energy supply in glucose-perfused slices and/or to the damage produced by the slicing procedure. However, these observations have been repeatedly contradicted by many groups and are inconsistent with a large body of evidence including the fact that the developmental shift is neither restricted to slices nor to rodents. We summarize the overwhelming evidence in support of both excitatory GABA during development, and the implications this has in developmental neurobiology. \ua9 2012 Ben-ari, Woodin, Sernagor, Cancedda, Vinay, Rivera,Legendre, Luhmann, Bordey, Wenner, Fukuda, Pol, Jean-luc and Cherubini

    From Retinal Waves to Activity-Dependent Retinogeniculate Map Development

    Get PDF
    A neural model is described of how spontaneous retinal waves are formed in infant mammals, and how these waves organize activity-dependent development of a topographic map in the lateral geniculate nucleus, with connections from each eye segregated into separate anatomical layers. The model simulates the spontaneous behavior of starburst amacrine cells and retinal ganglion cells during the production of retinal waves during the first few weeks of mammalian postnatal development. It proposes how excitatory and inhibitory mechanisms within individual cells, such as Ca2+-activated K+ channels, and cAMP currents and signaling cascades, can modulate the spatiotemporal dynamics of waves, notably by controlling the after-hyperpolarization currents of starburst amacrine cells. Given the critical role of the geniculate map in the development of visual cortex, these results provide a foundation for analyzing the temporal dynamics whereby the visual cortex itself develops

    Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Get PDF
    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli

    Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells

    Get PDF
    The functional separation of ON and OFF pathways, one of the fundamental features of the visual system, starts in the retina. During postnatal development, some retinal ganglion cells (RGCs) whose dendrites arborize in both ON and OFF sublaminae of the inner plexiform layer transform into RGCs with dendrites that monostratify in either the ON or OFF sublamina, acquiring final dendritic morphology in a subtype-dependent manner. Little is known about how the receptive field (RF) properties of ON, OFF, and ON-OFF RGCs mature during this time because of the lack of a reliable and efficient method to classify RGCs into these subtypes. To address this deficiency, we developed an innovative variant of Spike Triggered Covariance (STC) analysis, which we term Spike Triggered Covariance – Non-Centered (STC-NC) analysis. Using a multi-electrode array (MEA), we recorded the responses of a large population of mouse RGCs to a Gaussian white noise stimulus. As expected, the Spike-Triggered Average (STA) fails to identify responses driven by symmetric static nonlinearities such as those that underlie ON-OFF center RGC behavior. The STC-NC technique, in contrast, provides an efficient means to identify ON-OFF responses and quantify their RF center sizes accurately. Using this new tool, we find that RGCs gradually develop sensitivity to focal stimulation after eye opening, that the percentage of ON-OFF center cells decreases with age, and that RF centers of ON and ON-OFF cells become smaller. Importantly, we demonstrate for the first time that neurotrophin-3 (NT-3) regulates the development of physiological properties of ON-OFF center RGCs. Overexpression of NT-3 leads to the precocious maturation of RGC responsiveness and accelerates the developmental decrease of RF center size in ON-OFF cells. In summary, our study introduces STC-NC analysis which successfully identifies subtype RGCs and demonstrates how RF development relates to a neurotrophic driver in the retina
    • …
    corecore