21 research outputs found

    Tumor microenvironment gene expression profiles associated to complete pathological response and disease progression in resectable NSCLC patients treated with neoadjuvant chemoimmunotherapy

    Get PDF
    Background Neoadjuvant chemoimmunotherapy for non-small cell lung cancer (NSCLC) has improved pathological responses and survival rates compared with chemotherapy alone, leading to Food and Drug Administration (FDA) approval of nivolumab plus chemotherapy for resectable stage IB-IIIA NSCLC (AJCC 7th edition) without ALK or EGFR alterations. Unfortunately, a considerable percentage of tumors do not completely respond to therapy, which has been associated with early disease progression. So far, it is impossible to predict these events due to lack of knowledge. In this study, we characterized the gene expression profile of tumor samples to identify new biomarkers and mechanisms behind tumor responses to neoadjuvant chemoimmunotherapy and disease recurrence after surgery. Methods Tumor bulk RNA sequencing was performed in 16 pretreatment and 36 post-treatment tissue samples from 41 patients with resectable stage IIIA NSCLC treated with neoadjuvant chemoimmunotherapy from NADIM trial. A panel targeting 395 genes related to immunological processes was used. Tumors were classified as complete pathological response (CPR) and non-CPR, based on the total absence of viable tumor cells in tumor bed and lymph nodes tested at surgery. Differential-expressed genes between groups and pathway enrichment analysis were assessed using DESeq2 and gene set enrichment analysis. CIBERSORTx was used to estimate the proportions of immune cell subtypes. Results CPR tumors had a stronger pre-established immune infiltrate at baseline than non-CPR, characterized by higher levels of IFNG, GZMB, NKG7, and M1 macrophages, all with a significant area under the receiver operating characteristic curve (ROC) >0.9 for CPR prediction. A greater effect of neoadjuvant therapy was also seen in CPR tumors with a reduction of tumor markers and IFN gamma signaling after treatment. Additionally, the higher expression of several genes, including AKT1, BST2, OAS3, or CD8B; or higher dendritic cells and neutrophils proportions in post-treatment non-CPR samples, were associated with relapse after surgery. Also, high pretreatment PD-L1 and tumor mutational burden levels influenced the post-treatment immune landscape with the downregulation of proliferation markers and type I interferon signaling molecules in surgery samples. Conclusions Our results reinforce the differences between CPR and non-CPR responses, describing possible response and relapse immune mechanisms, opening the possibility of therapy personalization of immunotherapy-based regimens in the neoadjuvant setting of NSCLC

    Combining magnetic hyperthermia and dual T1/T2 MR imaging using highly versatile iron oxide nanoparticles

    Full text link
    [EN] Magnetic hyperthermia and magnetic resonance imaging (MRI) are two of the most important biomedical applications of magnetic nanoparticles (MNPs). However, the design of MNPs with good heating performance for hyperthermia and dual T1/T2 contrast for MRI remains a considerable challenge. In this work, ultrasmall superparamagnetic iron oxide nanoparticles (USPIONs) are synthesized through a simple one-step methodology. A post-synthetic purification strategy has been implemented in order to separate discrete nanoparticles from aggregates and unstable nanoparticles, leading to USPIONs that preserve chemical and colloidal stability for extended periods of time. The optimized nanoparticles exhibit high saturation magnetization and show good heating efficiency in magnetic hyperthermia experiments. Remarkably, the evaluation of the USPIONs as MRI contrast agents revealed that the nanoparticles are also able to provide significant dual T1/T2 signal enhancement. These promising results demonstrate that USPIONs are excellent candidates for the development of theranostic nanodevices with potential application in both hyperthermia and dual T1/T2 MR imaging.We are grateful to the Spanish Government (projects MAT2015-64139-C4-1-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (Projects PROMETEO/2018/024 and PROMETEOII/2014/047) for financial support. S. S. C. is grateful to the Spanish MEC for his FPU grant. JG acknowledges funding from FCT and the ERDF through NORTE2020 through the project Self-reporting immunestimulating formulation for on-demand cancer therapy with real-time treatment response monitoring (028052).Sánchez-Cabezas, S.; Montes-Robles, R.; Gallo, J.; Sancenón Galarza, F.; Martínez-Máñez, R. (2019). Combining magnetic hyperthermia and dual T1/T2 MR imaging using highly versatile iron oxide nanoparticles. Dalton Transactions. 48(12):3883-3892. https://doi.org/10.1039/c8dt04685aS388338924812Lee, J.-H., Jang, J., Choi, J., Moon, S. H., Noh, S., Kim, J., … Cheon, J. (2011). Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 6(7), 418-422. doi:10.1038/nnano.2011.95Hauser, A. K., Wydra, R. J., Stocke, N. A., Anderson, K. W., & Hilt, J. Z. (2015). Magnetic nanoparticles and nanocomposites for remote controlled therapies. Journal of Controlled Release, 219, 76-94. doi:10.1016/j.jconrel.2015.09.039González, B., Ruiz-Hernández, E., Feito, M. J., López de Laorden, C., Arcos, D., Ramírez-Santillán, C., … Vallet-Regí, M. (2011). Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection. Journal of Materials Chemistry, 21(12), 4598. doi:10.1039/c0jm03526bGallo, J., Long, N. J., & Aboagye, E. O. (2013). Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chemical Society Reviews, 42(19), 7816. doi:10.1039/c3cs60149hBoyer, C., Whittaker, M. R., Bulmus, V., Liu, J., & Davis, T. P. (2010). The design and utility of polymer-stabilized iron-oxide nanoparticles for nanomedicine applications. NPG Asia Materials, 2(1), 23-30. doi:10.1038/asiamat.2010.6Wáng, Y. X. J., & Idée, J.-M. (2017). A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quantitative Imaging in Medicine and Surgery, 7(1), 88-122. doi:10.21037/qims.2017.02.09Blanco-Andujar, C., Walter, A., Cotin, G., Bordeianu, C., Mertz, D., Felder-Flesch, D., & Begin-Colin, S. (2016). Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia. Nanomedicine, 11(14), 1889-1910. doi:10.2217/nnm-2016-5001Shin, T.-H., Choi, Y., Kim, S., & Cheon, J. (2015). Recent advances in magnetic nanoparticle-based multi-modal imaging. Chemical Society Reviews, 44(14), 4501-4516. doi:10.1039/c4cs00345dBusquets, M. A., Estelrich, J., & Sánchez-Martín, M. J. (2015). Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. International Journal of Nanomedicine, 1727. doi:10.2147/ijn.s76501Lee, N., & Hyeon, T. (2012). Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev., 41(7), 2575-2589. doi:10.1039/c1cs15248cWang, G., Zhang, X., Skallberg, A., Liu, Y., Hu, Z., Mei, X., & Uvdal, K. (2014). One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging. Nanoscale, 6(5), 2953. doi:10.1039/c3nr05550gKim, B. H., Lee, N., Kim, H., An, K., Park, Y. I., Choi, Y., … Hyeon, T. (2011). Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-ResolutionT1Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society, 133(32), 12624-12631. doi:10.1021/ja203340uNegussie, A. H., Yarmolenko, P. S., Partanen, A., Ranjan, A., Jacobs, G., Woods, D., … Dreher, M. R. (2011). Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. International Journal of Hyperthermia, 27(2), 140-155. doi:10.3109/02656736.2010.528140Hervault, A., & Thanh, N. T. K. (2014). Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 6(20), 11553-11573. doi:10.1039/c4nr03482aKumar, C. S. S. R., & Mohammad, F. (2011). Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 63(9), 789-808. doi:10.1016/j.addr.2011.03.008Deatsch, A. E., & Evans, B. A. (2014). Heating efficiency in magnetic nanoparticle hyperthermia. Journal of Magnetism and Magnetic Materials, 354, 163-172. doi:10.1016/j.jmmm.2013.11.006Zhang, J., Li, X., Rosenholm, J. M., & Gu, H. (2011). Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 361(1), 16-24. doi:10.1016/j.jcis.2011.05.038COROT, C., ROBERT, P., IDEE, J., & PORT, M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging☆. Advanced Drug Delivery Reviews, 58(14), 1471-1504. doi:10.1016/j.addr.2006.09.013Gonzales, M., Mitsumori, L. M., Kushleika, J. V., Rosenfeld, M. E., & Krishnan, K. M. (2010). Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127. Contrast Media & Molecular Imaging, 5(5), 286-293. doi:10.1002/cmmi.391Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 108(6), 2064-2110. doi:10.1021/cr068445eKiss, L. B., Söderlund, J., Niklasson, G. A., & Granqvist, C. G. (1999). New approach to the origin of lognormal size distributions of nanoparticles. Nanotechnology, 10(1), 25-28. doi:10.1088/0957-4484/10/1/006De Palma, R., Peeters, S., Van Bael, M. J., Van den Rul, H., Bonroy, K., Laureyn, W., … Maes, G. (2007). Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible. Chemistry of Materials, 19(7), 1821-1831. doi:10.1021/cm0628000Roonasi, P., & Holmgren, A. (2009). A Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) study of oleate adsorbed on magnetite nano-particle surface. Applied Surface Science, 255(11), 5891-5895. doi:10.1016/j.apsusc.2009.01.031Yan, K., Li, H., Wang, X., Yi, C., Zhang, Q., Xu, Z., … Whittaker, A. K. (2014). Self-assembled magnetic luminescent hybrid micelles containing rare earth Eu for dual-modality MR and optical imaging. J. Mater. Chem. B, 2(5), 546-555. doi:10.1039/c3tb21381aGarland, E. R., Rosen, E. P., Clarke, L. I., & Baer, T. (2008). Structure of submonolayer oleic acid coverages on inorganic aerosol particles: evidence of island formation. Physical Chemistry Chemical Physics, 10(21), 3156. doi:10.1039/b718013fSmolensky, E. D., Park, H.-Y. E., Zhou, Y., Rolla, G. A., Marjańska, M., Botta, M., & Pierre, V. C. (2013). Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents. Journal of Materials Chemistry B, 1(22), 2818. doi:10.1039/c3tb00369hKodama, R. . (1999). Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 200(1-3), 359-372. doi:10.1016/s0304-8853(99)00347-9Bean, C. P., & Livingston, J. D. (1959). Superparamagnetism. Journal of Applied Physics, 30(4), S120-S129. doi:10.1063/1.2185850Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 7(1). doi:10.1038/s41598-017-09897-5Roca, A. G., Morales, M. P., O’Grady, K., & Serna, C. J. (2006). Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors. Nanotechnology, 17(11), 2783-2788. doi:10.1088/0957-4484/17/11/010Coey, J. M. D. (1971). Noncollinear Spin Arrangement in Ultrafine Ferrimagnetic Crystallites. Physical Review Letters, 27(17), 1140-1142. doi:10.1103/physrevlett.27.1140Linderoth, S., Hendriksen, P. V., Bo/dker, F., Wells, S., Davies, K., Charles, S. W., & Mo/rup, S. (1994). On spin‐canting in maghemite particles. Journal of Applied Physics, 75(10), 6583-6585. doi:10.1063/1.356902Daou, T. J., Grenèche, J. M., Pourroy, G., Buathong, S., Derory, A., Ulhaq-Bouillet, C., … Begin-Colin, S. (2008). Coupling Agent Effect on Magnetic Properties of Functionalized Magnetite-Based Nanoparticles. Chemistry of Materials, 20(18), 5869-5875. doi:10.1021/cm801405nSerna, C. J., Bødker, F., Mørup, S., Morales, M. P., Sandiumenge, F., & Veintemillas-Verdaguer, S. (2001). Spin frustration in maghemite nanoparticles. Solid State Communications, 118(9), 437-440. doi:10.1016/s0038-1098(01)00150-8Laurent, S., Dutz, S., Häfeli, U. O., & Mahmoudi, M. (2011). Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Advances in Colloid and Interface Science, 166(1-2), 8-23. doi:10.1016/j.cis.2011.04.003N. T. Thanh , Magnetic Nanoparticles From Fabrication to Clinical Applications , CRC Press , Boca Raton , 2012Hergt, R., & Dutz, S. (2007). Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. Journal of Magnetism and Magnetic Materials, 311(1), 187-192. doi:10.1016/j.jmmm.2006.10.1156Dong-Hyun Kim, Thai, Y. T., Nikles, D. E., & Brazel, C. S. (2009). Heating of Aqueous Dispersions Containing MnFe2O4{\hbox{MnFe}}_{2}{\hbox{O}}_{4} Nanoparticles by Radio-Frequency Magnetic Field Induction. IEEE Transactions on Magnetics, 45(1), 64-70. doi:10.1109/tmag.2008.2005329Rosensweig, R. E. (2002). Heating magnetic fluid with alternating magnetic field. Journal of Magnetism and Magnetic Materials, 252, 370-374. doi:10.1016/s0304-8853(02)00706-0D. Ortega and Q. A.Pankhurst , in Nanoscience: Volume 1: Nanostructures through Chemistry , ed. P. O'Brien , The Royal Society of Chemistry , Cambridge , 2013 , vol. 1 , pp. 60–88Wildeboer, R. R., Southern, P., & Pankhurst, Q. A. (2014). On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal of Physics D: Applied Physics, 47(49), 495003. doi:10.1088/0022-3727/47/49/495003Guibert, C., Dupuis, V., Peyre, V., & Fresnais, J. (2015). Hyperthermia of Magnetic Nanoparticles: Experimental Study of the Role of Aggregation. The Journal of Physical Chemistry C, 119(50), 28148-28154. doi:10.1021/acs.jpcc.5b07796Henoumont, C., Laurent, S., & Vander Elst, L. (2009). How to perform accurate and reliable measurements of longitudinal and transverse relaxation times of MRI contrast media in aqueous solutions. Contrast Media & Molecular Imaging, 4(6), 312-321. doi:10.1002/cmmi.294Biju, S., Gallo, J., Bañobre‐López, M., Manshian, B. B., Soenen, S. J., Himmelreich, U., … Parac‐Vogt, T. N. (2018). A Magnetic Chameleon: Biocompatible Lanthanide Fluoride Nanoparticles with Magnetic Field Dependent Tunable Contrast Properties as a Versatile Contrast Agent for Low to Ultrahigh Field MRI and Optical Imaging in Biological Window. Chemistry – A European Journal, 24(29), 7388-7397. doi:10.1002/chem.201800283Rohrer, M., Bauer, H., Mintorovitch, J., Requardt, M., & Weinmann, H.-J. (2005). Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths. Investigative Radiology, 40(11), 715-724. doi:10.1097/01.rli.0000184756.66360.d3Guldris, N., Argibay, B., Kolen’ko, Y. V., Carbó-Argibay, E., Sobrino, T., Campos, F., … Rivas, J. (2016). Influence of the separation procedure on the properties of magnetic nanoparticles: Gaining in vitro stability and T1–T2 magnetic resonance imaging performance. Journal of Colloid and Interface Science, 472, 229-236. doi:10.1016/j.jcis.2016.03.040Hu, F., & Zhao, Y. S. (2012). Inorganic nanoparticle-based T1 and T1/T2 magnetic resonance contrast probes. Nanoscale, 4(20), 6235. doi:10.1039/c2nr31865bDaldrup-Link, H. E. (2017). Ten Things You Might Not Know about Iron Oxide Nanoparticles. Radiology, 284(3), 616-629. doi:10.1148/radiol.2017162759Hu, F., Jia, Q., Li, Y., & Gao, M. (2011). Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrastT1- andT2-weighted magnetic resonance imaging. Nanotechnology, 22(24), 245604. doi:10.1088/0957-4484/22/24/245604Tegafaw, T., Xu, W., Ahmad, M. W., Baeck, J. S., Chang, Y., Bae, J. E., … Lee, G. H. (2015). Dual-modeT1andT2magnetic resonance imaging contrast agent based on ultrasmall mixed gadolinium-dysprosium oxide nanoparticles: synthesis, characterization, andin vivoapplication. Nanotechnology, 26(36), 365102. doi:10.1088/0957-4484/26/36/365102Im, G. H., Kim, S. M., Lee, D.-G., Lee, W. J., Lee, J. H., & Lee, I. S. (2013). Fe3O4/MnO hybrid nanocrystals as a dual contrast agent for both T1- and T2-weighted liver MRI. Biomaterials, 34(8), 2069-2076. doi:10.1016/j.biomaterials.2012.11.05

    Cortical thinning over two years after first-episode psychosis depends on age of onset

    Get PDF
    First-episode psychosis (FEP) patients show structural brain abnormalities at the first episode. Whether the cortical changes that follow a FEP are progressive and whether age at onset modulates these changes remains unclear. This is a multicenter MRI study in a deeply phenotyped sample of 74 FEP patients with a wide age range at onset (15–35 years) and 64 neurotypical healthy controls (HC). All participants underwent two MRI scans with a 2-year follow-up interval. We computed the longitudinal percentage of change (PC) for cortical thickness (CT), surface area (CSA) and volume (CV) for frontal, temporal, parietal and occipital lobes. We used general linear models to assess group differences in PC as a function of age at FEP. We conducted post-hoc analyses for metrics where PC differed as a function of age at onset. We found a significant age-by-diagnosis interaction effect for PC of temporal lobe CT (d = 0.54; p = 002). In a post-hoc-analysis, adolescent-onset (≤19 y) FEP showed more severe longitudinal cortical thinning in the temporal lobe than adolescent HC. We did not find this difference in adult-onset FEP compared to adult HC. Our study suggests that, in individuals with psychosis, CT changes that follow the FEP are dependent on the age at first episode, with those with an earlier onset showing more pronounced cortical thinning in the temporal lobe

    Prodromal symptoms and the duration of untreated psychosis in first episode of psychosis patients: what differences are there between early vs. adult onset and between schizophrenia vs. bipolar disorder?

    Get PDF
    To assess the role of age (early onset psychosis-EOP < 18 years vs. adult onset psychosis-AOP) and diagnosis (schizophrenia spectrum disorders-SSD vs. bipolar disorders-BD) on the duration of untreated psychosis (DUP) and prodromal symptoms in a sample of patients with a first episode of psychosis. 331 patients with a first episode of psychosis (7–35 years old) were recruited and 174 (52.6%) diagnosed with SSD or BD at one-year follow-up through a multicenter longitudinal study. The Symptom Onset in Schizophrenia (SOS) inventory, the Positive and Negative Syndrome Scale and the structured clinical interviews for DSM-IV diagnoses were administered. Generalized linear models compared the main effects and group interaction. 273 AOP (25.2 ± 5.1 years; 66.5% male) and 58 EOP patients (15.5 ± 1.8 years; 70.7% male) were included. EOP patients had significantly more prodromal symptoms with a higher frequency of trouble with thinking, avolition and hallucinations than AOP patients, and significantly different median DUP (91 [33–177] vs. 58 [21–140] days; Z = − 2.006, p = 0.045). This was also significantly longer in SSD vs. BD patients (90 [31–155] vs. 30 [7–66] days; Z = − 2.916, p = 0.004) who, moreover had different profiles of prodromal symptoms. When assessing the interaction between age at onset (EOP/AOP) and type of diagnosis (SSD/BD), avolition was significantly higher (Wald statistic = 3.945; p = 0.047), in AOP patients with SSD compared to AOP BD patients (p = 0.004). Awareness of differences in length of DUP and prodromal symptoms in EOP vs. AOP and SSD vs. BD patients could help improve the early detection of psychosis among minors

    Influence of clinical and neurocognitive factors in psychosocial functioning after a first episode non-affective psychosis: differences between males and females

    Get PDF
    BackgroundDeficits in psychosocial functioning are present in the early stages of psychosis. Several factors, such as premorbid adjustment, neurocognitive performance, and cognitive reserve (CR), potentially influence functionality. Sex differences are observed in individuals with psychosis in multiple domains. Nonetheless, few studies have explored the predictive factors of poor functioning according to sex in first-episode psychosis (FEP). This study aimed to explore sex differences, examine changes, and identify predictors of functioning according to sex after onset.Materials and methodsThe initial sample comprised 588 individuals. However, only adults with non-affective FEP (n = 247, 161 males and 86 females) and healthy controls (n = 224, 142 males and 82 females) were included. A comprehensive assessment including functional, neuropsychological, and clinical scales was performed at baseline and at 2-year follow-up. A linear regression model was used to determine the predictors of functioning at 2-year follow-up.ResultsFEP improved their functionality at follow-up (67.4% of both males and females). In males, longer duration of untreated psychosis (β = 0.328, p = 0.003) and worse premorbid adjustment (β = 0.256, p = 0.023) were associated with impaired functioning at 2-year follow-up, while in females processing speed (β = 0.403, p = 0.003), executive function (β = 0.299, p = 0.020) and CR (β = −0.307, p = 0.012) were significantly associated with functioning.ConclusionOur data indicate that predictors of functioning at 2-year follow-up in the FEP group differ according to sex. Therefore, treatment and preventative efforts may be adjusted taking sex into account. Males may benefit from functional remediation at early stages. Conversely, in females, early interventions centered on CR enhancement and cognitive rehabilitation may be recommended

    All-cause mortality in the cohorts of the Spanish AIDS Research Network (RIS) compared with the general population: 1997Ł2010

    Get PDF
    Abstract Background: Combination antiretroviral therapy (cART) has produced significant changes in mortality of HIVinfected persons. Our objective was to estimate mortality rates, standardized mortality ratios and excess mortality rates of cohorts of the AIDS Research Network (RIS) (CoRIS-MD and CoRIS) compared to the general population. Methods: We analysed data of CoRIS-MD and CoRIS cohorts from 1997 to 2010. We calculated: (i) all-cause mortality rates, (ii) standardized mortality ratio (SMR) and (iii) excess mortality rates for both cohort for 100 personyears (py) of follow-up, comparing all-cause mortality with that of the general population of similar age and gender. Results: Between 1997 and 2010, 8,214 HIV positive subjects were included, 2,453 (29.9%) in CoRIS-MD and 5,761 (70.1%) in CoRIS and 294 deaths were registered. All-cause mortality rate was 1.02 (95% CI 0.91-1.15) per 100 py, SMR was 6.8 (95% CI 5.9-7.9) and excess mortality rate was 0.8 (95% CI 0.7-0.9) per 100 py. Mortality was higher in patients with AIDS, hepatitis C virus (HCV) co-infection, and those from CoRIS-MD cohort (1997. Conclusion: Mortality among HIV-positive persons remains higher than that of the general population of similar age and sex, with significant differences depending on the history of AIDS or HCV coinfection

    Analysis of circulating tumour DNA to identify patients with epidermal growth factor receptor-positive non-small cell lung cancer who might benefit from sequential tyrosine kinase inhibitor treatment.

    No full text
    Survival data support the use of first-line osimertinib as the standard of care for epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer (NSCLC). However, it remains unclear whether upfront osimertinib is superior to sequential first- or second-generation tyrosine kinase inhibitors (TKIs) followed by osimertinib for all patients. It is impossible to predict which patients are at high risk of progression, and this constitutes a major limitation of the sequential TKI approach. A total of 830 plasma samples from 228 patients with stage IV, EGFR-positive NSCLC who were treated with first-line TKIs were analysed by digital polymerase chain reaction (dPCR). The circulating tumour DNA (ctDNA) levels helped to identify patients with significantly improved survival rate, regardless of the treatment. Patients treated with first- or second-generation TKIs (N = 189) with EGFR mutations in plasma at a mutant allele frequency (MAF) Pre-treatment ctDNA levels identify low-risk patients, who may benefit from sequential TKI treatment. Information regarding EGFR mutation clearance can help to improve patient selection

    Impact of late presentation of HIV infection on short-, mid- and long-term mortality and causes of death in a multicenter national cohort : 2004-2013

    Get PDF
    To analyze the impact of late presentation (LP) on overall mortality and causes of death and describe LP trends and risk factors (2004-2013). Cox models and logistic regression were used to analyze data from a nation-wide cohort in Spain. LP is defined as being diagnosed when CD4 < 350 cells/ml or AIDS. Of 7165 new HIV diagnoses, 46.9% (CI:45.7-48.0) were LP, 240 patients died.First-year mortality was the highest (aHR = 10.3[CI:5.5-19.3]); between 1 and 4 years post-diagnosis, aHR = 1.9(1.2-3.0); an
    corecore