96 research outputs found

    Predictive factors of species composition of follower fishes in nuclear-follower feeding associations: a snapshot study

    Get PDF
    We tested whether habitat, identity, size of nuclear fishes, and intensity of bottom disturbance caused by their foraging can predict the composition of fish followers in nuclear-follower feeding associations. The study was carried out in a stream of the Serra da Bodoquena, Mato Grosso do Sul State, Southwestern Brazil. We performed underwater observational sessions (total 12 h) of such interspecific interactions to obtain data about the identity and abundance of the followers in the association, as well as the identity and size of the nuclear fish. We also evaluated whether different intensities of bottom disturbance due to the nuclear fish foraging and type of habitat may influence interactions. We recorded 38 episodes involving nuclear and follower species. Using a multivariate analysis with distance matrices, we noted that the intensity of bottom disturbance caused by nuclear fishes was the main predictor of the composition of the follower species (r = 0.55, p < 0.01), as well as the identity of the nuclear species, although this latter relation was weak (r = 0.09, p = 0.05). Such results indicate that followers react readily to sediment suspension, which reflects the trophic plasticity and opportunistic foraging characteristic of most tropical freshwater fishes124913919CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ571295/2008-8Neste estudo testamos se o hábitat, a identidade e o tamanho da espécie nuclear, bem como a intensidade do distúrbio causado pela atividade do nuclear podem predizer a composição de seguidores na associação alimentar do tipo nuclear-seguidor. O estudo foi conduzido em um riacho da Serra da Bodoquena, estado do Mato Grosso do Sul, bacia do alto Rio Paraguai. Foram realizadas sessões de observação subaquática (totalizando 12 h), visando a obter informações sobre identidade e abundância dos seguidores, assim como identidade e tamanho da espécie nuclear, hábitat e intensidade do distúrbio causado pela atividade de forrageamento da espécie nuclear. Foram registradas 38 associações envolvendo cinco espécies nucleares e nove espécies seguidoras. A análise multivariada com matrizes de distância demonstrou que a intensidade do distúrbio causado pelos nucleares foi o principal preditor da composição de seguidores (r = 0,55, p < 0,01), assim como a identidade da espécie nuclear, embora essa relação tenha sido fraca (r = 0,09, p = 0,05). Esses resultados indicam que os seguidores respondem prontamente à suspensão de sedimento, refletindo a plasticidade trófica e o oportunismo de forrageio característico da maioria dos peixes tropicais de água doc

    Phylogenetic perspectives on reef fish functional traits

    Get PDF
    Functional traits have been fundamental to the evolution and diversification of entire fish lineages on coral reefs. Yet their relationship with the processes promoting speciation, extinction and the filtering of local species pools remains unclear. We review the current literature exploring the evolution of diet, body size, water column use and geographic range size in reef-associated fishes. Using published and new data, we mapped functional traits on to published phylogenetic trees to uncover evolutionary patterns that have led to the current functional diversity of fishes on coral reefs. When examining reconstructed patterns for diet and feeding mode, we found examples of independent transitions to planktivory across different reef fish families. Such transitions and associated morphological alterations may represent cases in which ecological opportunity for the exploitation of different resources drives speciation and adaptation. In terms of body size, reconstructions showed that both large and small sizes appear multiple times within clades of mid-sized fishes and that extreme body sizes have arisen mostly in the last 10 million years (Myr). The reconstruction of range size revealed many cases of disparate range sizes among sister species. Such range size disparity highlights potential vicariant processes through isolation in peripheral locations. When accounting for peripheral speciation processes in sister pairs, we found a significant relationship between labrid range size and lineage age. The diversity and evolution of traits within lineages is influenced by trait–environment interactions as well as by species and trait–trait interactions, where the presence of a given trait may trigger the development of related traits or behaviours. Our effort to assess the evolution of functional diversity across reef fish clades adds to the burgeoning research focusing on the evolutionary and ecological roles of functional traits. We argue that the combination of a phylogenetic and a functional approach will improve the understanding of the mechanisms of species assembly in extraordinarily rich coral reef communities

    Evolutionary processes underlying latitudinal differences in reef fish biodiversity

    Get PDF
    Aim: To examine the dynamics among the processes of speciation, extinction and dispersal in marine environments using phylogenies to reveal the evolutionary mechanisms that promote latitudinal differences in biodiversity. Using phylogenetic comparative methods we assess whether tropical reef fish lineages show higher diversification rates and whether the majority of extratropical reef fish lineages have originated from tropical areas. Location: Shallow water tropical and extratropical reefs globally. Methods: Using fossil-calibrated phylogenies for four reef-associated fish families (Chaetodontidae, Labridae, Pomacentridae and Sparidae) we apply evolutionary models (GeoSSE and HiSSE) that allow the estimation of speciation, extinction and dispersal rates associated with geographical ranges and explore potential biases from unsampled characters. Results: We found that tropical lineages show higher rates of speciation and tended to have lower extinction rates. Overall, we identify higher net diversification rates for tropical lineages compared with those in extratropical regions in all four families. Rates of dispersal tended to be higher for lineages with tropical origins expanding into extratropical regions. Within the family Labridae, two tropical lineages were found to exhibit higher net diversification rates, above that expected from latitudinal differences. Main conclusions : Our results offer support for the predictions of the out of the tropics' and evolutionary speed' models of evolution, both of which highlight the marine tropics as an important evolutionary engine promoting latitudinal differences in reef fish biodiversity. Moreover, we find that two tropical labrid lineages are undergoing exceptional diversification associated with additional traits, possibly linked with the extreme sexual dichromatism observed in both clades

    Habitat and community structure modulate fish interactions in a neotropical clearwater river

    Get PDF
    Species interactions can modulate the diversity and enhance the stability of biological communities in aquatic ecosystems. Despite previous efforts to describe fish interactions in tropical rivers, the role of habitat characteristics, community structure, and trophic traits over these interactions is still poorly understood. To investigate among-habitat variation in substratum feeding pressure and agonistic interactions between fishes, we used remote underwater videos in three habitats of a clearwater river in the Central Western, Brazil. We also performed visual surveys to estimate the abundance and biomass of fishes and proposed a trophic classification to understand how these variables can affect fish interactions. Community structure was the main factor affecting the variation in the interactions among the habitats. Biomass was the main variable determining which habitat a fish will feed on, while species abundance determined with how many other species it will interact in the agonistic interaction networks for each habitat. Specific habitats are not only occupied, but also used in distinct ways by the fish community. Overall, our results demonstrate the importance of the heterogeneity of habitats in tropical rivers for the interactions performed by the fishes and how the intensity of these interactions is affected by community structure

    Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes

    Get PDF
    How do biogeographically different provinces arise in response to oceanic barriers to dispersal? Here, we analyse how traits related to the pelagic dispersal and adult biology of 985 tropical reef fish species correlate with their establishing populations on both sides of two Atlantic marine barriers: the Mid-Atlantic Barrier (MAB) and the Amazon-Orinoco Plume (AOP). Generalized linear mixed-effects models indicate that predictors for successful barrier crossing are the ability to raft with flotsam for the deep-water MAB, non-reef habitat usage for the freshwater and sediment-rich AOP, and large adult-size and large latitudinal-range for both barriers. Variation in larval-development mode, often thought to be broadly related to larval-dispersal potential, is not a significant predictor in either case. Many more species of greater taxonomic diversity cross the AOP than the MAB. Rafters readily cross both barriers but represent a much smaller proportion of AOP crossers than MAB crossers. Successful establishment after crossing both barriers may be facilitated by broad environmental tolerance associated with large body size and wide latitudinal-range. These results highlight the need to look beyond larval-dispersal potential and assess adult-biology traits when assessing determinants of successful movements across marine barriers.International Macquarie University; Australian Research Council; Smithsonian Tropical Research Institute; National Geographic Society [7937-05]; CNPq; NSF [DEB-0072909]; University of Californi

    Nestedness across biological scales

    Get PDF
    Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general.Facultad de Ciencias Naturales y Muse

    Nestedness across biological scales

    Get PDF
    Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general.Facultad de Ciencias Naturales y Muse

    Evolutionary history, biogeography, and a new species of Sphoeroides (Tetraodontiformes: Tetraodontidae): how the major biogeographic barriers of the Atlantic Ocean shaped the evolution of a pufferfish genus

    Get PDF
    ABSTRACT: Tetraodontidae is the most speciose family of Tetraodontiformes and is represented by fish popularly known as pufferfishes. They are characterized by modified jaws with four dental plates and the ability to inflate their bodies. Tetraodontids are distributed throughout the world and have a wide range of habitat use. One of its genera, Sphoeroides, shows a biogeographical pattern, with 19 of its 21 species restricted to coastal regions of the Americas. Although represented in large-scale phylogenies, the evolutionary history and biogeography of the genus have not been explored in detail. The present study aims to understand the historical and biogeographic processes that shaped the evolutionary history of Sphoeroides. Including samples from all biogeographic regions of its occurrence, we reconstruct a phylogenetic/biogeographic history hypothesis for the genus. Our results show that Sphoeroides is a paraphyletic group comprising Colomesus; indicate a central role of the biogeographic barriers of the Atlantic Ocean in the diversification of the genus; and identified a cryptic species in Brazilian waters, formally known as S. spengleri, described here through integrative taxonomy. We also propose nomenclatural changes given the position of Colomesus deeply nested within Sphoeroides.info:eu-repo/semantics/publishedVersio

    Integrated ecosystem assessment around islands of the tropical South Mid-Atlantic Ridge

    Get PDF
    The South Mid Atlantic Ridge comprises three main oceanic islands in the equatorial and tropical portions of the Atlantic Ocean. These islands are isolated from each other and equidistant from both the continental margins of South America and Africa, sharing common patterns but with different types of human use and pressures. Moreover, the areas beyond national jurisdiction between those islands are visited and exploited by distant fishing fleets and include large areas of shipping activity for commodities. Here, a pioneering integrated ecosystem assessment (IEA) process is constructed for the region among Saint Peter and Saint Paul’s Archipelago (Brazil), Saint Helena Island and Ascension Island (UK overseas territories). For that, we used a qualitative assessment of risks arising from anthropogenic activities, representing a novel contribution to the field. The Options for Delivering Ecosystem-Based Marine Management (ODEMM) approach was applied to trace sector–pressure–component pathways. A ‘linkage framework’ was outlined including pressures affecting each ecosystem component, and supported a process of knowledge attributions that scored the impact risks. All results were validated with regional stakeholders through workshops, including local and international management bodies, non-governmental organizations (NGOs) and scientists. The approach focused on a significant area among encompassing the open ocean, shallow and deep-sea biomes, analyzing the main sectors and pressures affecting the ecological components. Our results identified 14 sectors and 16 key pressures associated with 23 ecosystem components, totaling 780 impact chains. Fishing, shipping, wastewater, and tourism/recreation appeared as the top impacting sectors. Fishing and shipping were the most connected with ecosystem components links. Litter, species extraction, contaminants, and bycatch were the pressures that had the highest risk of impact values. Lastly, demersal and pelagic fish and pelagic and demersal elasmobranchs were the groups with the highest risk related to overall impacts, which were supported by local and regional evidence from long term monitoring programs and local studies. Our study demonstrated that these seemingly pristine islands and oceanic waters are already experiencing human impacts that should be addressed by local both conservation measures and international agreements. We also highlight the pressures that should be prioritized for better monitoring and policy, as well as those linkage components that have been less investigated

    Nestedness across biological scales

    Get PDF
    Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general.Facultad de Ciencias Naturales y Muse
    corecore