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ABSTRACT 28	
 29	
Aim: To examine the dynamics among processes of speciation, extinction and dispersal in 30	

marine environments using phylogenies to reveal the evolutionary mechanisms that promote 31	

latitudinal differences in biodiversity. Using phylogenetic comparative methods we assess 32	

whether tropical reef fish lineages show higher diversification rates and whether the majority 33	

of extratropical reef fish lineages have originated from tropical areas.  34	

Location: Shallow water tropical and extratropical reefs globally. 35	

Methods: Using fossil calibrated phylogenies for four reef associated fish families 36	

(Chaetodontidae, Labridae, Pomacentridae and Sparidae) we apply evolutionary models 37	

(GeoSSE and HiSSE) that allow the estimation of speciation, extinction and dispersal rates 38	

associated with geographic ranges and exploring potential biases from unsampled characters.  39	

Results: We found that tropical lineages show higher rates of speciation and tended to have 40	

lower extinction rates. Overall, we identify higher net diversification rates for tropical lineages 41	

when compared to those in extratropical regions in all four families. Rates of dispersal tended 42	

to be higher for lineages with tropical origins expanding into extratropical regions. Within the 43	

family Labridae, two tropical lineages were found to exhibit higher net diversification rates, 44	

above that expected by latitudinal differences.  45	

Main conclusions: Our results offer support for the predictions of the ‘out of the tropics’ and 46	

‘evolutionary speed’ models of evolution,	both of which highlight the marine tropics as an 47	

important evolutionary engine promoting latitudinal differences in reef fish biodiversity. 48	

Moreover, we find that two tropical labrid lineages are undergoing exceptional diversification 49	

associated with additional traits, possibly linked with extreme sexual dichromatism observed 50	

in both clades.  51	

 52	
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INTRODUCTION 53	

 Although being the most widespread macroecological pattern in the world, the latitudinal 54	

diversity gradient (LDG) remains poorly understood with respect to its generating processes 55	

(Hillebrand, 2004). This limited understanding stems from a lack of focus on the historical and 56	

evolutionary factors driving this pervasive biodiversity pattern. The uneven distribution of 57	

tropical and extratropical lineages in phylogenetic trees is an evolutionary property that arises 58	

from the LDG depending on the dynamics between speciation and extinction (Mittelbach et al., 59	

2007). Besides this, the phylogenetic component of the LDG depends on the process of lineage 60	

dispersal between different ecological zones (Ricklefs, 2006). Thus, every evolutionary 61	

hypothesis concerning the LDG must take into account at least one of these three fundamental 62	

processes that alter species richness: speciation, extinction and dispersal (Dowle et al., 2013).  63	

Considering these processes, there are four main hypotheses to explain the phylogenetic 64	

properties arising from the LDG. (1) The ‘evolutionary time’ hypothesis (Fischer, 1960), 65	

considers that tropical lineages have had more time to diversify because tropical environments 66	

remained more stable throughout geological time. According to this hypothesis, evolutionary 67	

rates would be equal among geographic regions, however, tropical lineages would be older than 68	

extratropical ones, leading to more extant species in the tropics.  (2) The ‘tropical niche 69	

conservatism’ hypothesis (Wiens & Donoghue, 2004), assumes that species that share common 70	

ancestry tend to share niche affinities. It proposes that most lineages would have originated in 71	

the tropics because tropical areas had greater geographical extent in recent geological past and 72	

that the transition to extratropical zones would be rare. In terms of evolutionary rates, speciation 73	

and extinction were supposed to be equal among geographic regions and dispersal would be 74	

more frequent from extratropical zones to the tropics. (3) The ‘out of the tropics’ (Jablonski et 75	

al., 2006) is an explicit hypothesis about differences in all evolutionary rates. It suggests that 76	
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lineage origination is higher in the tropics, extinction rates are higher or equal in extratropics 77	

compared to the tropics, and that tropical lineages disperse to the extratropics more frequently 78	

than the reverse. (4) Finally, the ‘evolutionary speed’ hypothesis (Rohde, 1992) proposes that 79	

speciation rates would be higher in tropical environments, mainly due to increased rates of 80	

molecular evolution in the tropics (reviewed in Dowle et al., 2013). Thus, this hypothesis 81	

considers that extinction and dispersal rates would not vary among geographic regions.  82	

Recent studies are helping to disentangle these evolutionary processes by using time-83	

calibrated phylogenies to make explicit tests of speciation, extinction and dispersal rates 84	

between tropical and extratropical lineages (Pyron & Wiens, 2013; Pyron, 2014; Rolland et al., 85	

2014). Their main results suggest higher speciation rates for tropical lineages in amphibians 86	

and mammals (Pyron & Wiens, 2013; Rolland et al., 2014), but not in squamate reptiles (Pyron, 87	

2014), while higher extinction rates have been reported for extratropical lineages in all groups. 88	

As for dispersal rates, these studies showed more lineage dispersal from the extratropics to the 89	

tropics in amphibians and squamate reptiles, while mammals follow the opposite pattern. These 90	

results reinforce the idiosyncratic nature of evolutionary processes among taxonomical groups, 91	

yet they have focused on terrestrial organisms. It is still unclear which processes have been 92	

important in marine systems for generating latitudinal patterns of biodiversity. 93	

Although many marine groups exhibit a strong LDG (Hillebrand, 2004), there remains a 94	

gap in our knowledge of the underlying phylogenetic component, especially in diverse systems 95	

like coral reefs. These environments tend to occupy tropical latitudinal bands, but peripheral 96	

extratropical conditions may also permit the establishment of complex, non-coral dominated 97	

reef communities (Ebeling & Hixon, 1991; Fig. 1). It is the transition from tropical coral 98	

dominated reef to extratropical rocky reef and kelp forest systems that forms the latitudinal 99	

diversity gradient for reef-associated organisms. Coral reef environments are recognized as 100	
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important promoters of lineage diversification, in particular for associated fishes, where they 101	

have acted as refugia for biodiversity in periods of elevated extinction (Cowman & Bellwood, 102	

2011; Pellissier et al., 2014). Reef fishes not only exhibit a marked latitudinal gradient with 103	

more species in the tropics but also a striking longitudinal gradient with species richness 104	

peaking in the Indo-Australian Archipelago (Mora et al., 2003). Many efforts have been 105	

devoted to understand the contemporary factors that influences these patterns (e.g. Bellwood et 106	

al., 2005; Tittensor et al., 2010), with geometric (reef area and costal length) and biogeographic 107	

variables identified as powerful predictors for reef fish species richness (Parravicini et al., 108	

2013). However, as yet, no study has attempted to quantify the roles played by processes of 109	

speciation, extinction and dispersal in large-scale patterns of reef fish richness among tropical 110	

and extratropical regions. 111	

Here, we employed phylogenetic comparative methods to test predictions of the 112	

evolutionary hypotheses concerning reef fish latitudinal differences in biodiversity. We used 113	

time-calibrated phylogenies of four families that are known to have representatives in both 114	

tropical and extratropical reefs to test for differences in speciation, extinction and dispersal rates 115	

among lineages. Although these three processes have not been tested for reef fishes in the 116	

context of the LDG, they are recognized as important drivers of contemporary species richness 117	

patterns for this system (Mora et al., 2003). Specifically, we assessed which evolutionary 118	

hypothesis (‘evolutionary time’, ‘tropical niche conservatism’, ‘out of the topics’ or 119	

‘evolutionary speed’) drives the formation and maintenance of higher reef fish diversity in the 120	

tropics. 121	

 122	

METHODS 123	

Reef fish evolutionary relationships 124	
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We examined four percomorph families with high phylogenetic resolution, known to be 125	

associated with both tropical and extratropical reef environments (Bellwood & Wainwright, 126	

2002): Chaetodontidae, Labridae, Pomacentridae and Sparidae. The Chaetodontidae, Labridae 127	

and Pomacentridae are among the most species rich families in reef environments and have a 128	

good phylogenetic resolution. However, they are predominantly associated with tropical coral 129	

reefs. To capture a good representativeness both in terms of species richness and variation in 130	

occupation of tropical vs. extratropical environments we also included the family Sparidae, 131	

which is characteristic of extratropical reefs (Bellwood & Wainwright, 2002). For our 132	

phylogenetic comparative methods, we used recent published chronograms for each family.  133	

The Chaetodontidae phylogeny was reconstructed with Bayesian inferences using four 134	

mitochondrial genes and four nuclear genes (see Cowman & Bellwood, 2011). It was calibrated 135	

using fossil data and included 96 species from all nominal genera for the family. 136	

The labrid phylogeny from Cowman & Bellwood (2011) was combined with the 137	

parrotfish phylogeny of Choat et al. (2012). This was accomplished by grafting the parrotfish 138	

clade into the labrid tree at the appropriate node using the ‘ape’ package  (Paradis et al., 2004) 139	

in R (R Core Team, 2014). This larger phylogeny included 303 species from 70 genera. 140	

For the Pomacentridae we employed the chronogram of Frédérich et al. (2013). This 141	

represents the most recent molecular and phylogenetic analysis of the family with Bayesian 142	

inferences using three nuclear and four mitochondrial genes. This chronogram also used fossil 143	

data and comprised 206 species from 28 of 29 recognized genera for the family. 144	

For the Sparidae, we used the most well sampled phylogeny to date (Santini et al., 2014). 145	

This fossil calibrated phylogeny was built with three mitochondrial and two nuclear genes, and 146	

included 91 species with representatives from all recognized genera for the family (see Santini 147	

et al., 2014). 148	
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 149	

Geographic data 150	

We assessed the geographic ranges of all nominal species in each family through four 151	

different sources: published data in books and papers (e.g. Allen, 1991; Randall, 2005; Kuiter, 152	

2010); Catalog of Fishes (Eschmeyer, 2014); IUCN’s red list (IUCN, 2014); and FishBase 153	

(Froese & Pauly, 2014). The range data for each species was cross-checked between these four 154	

sources to avoid any probable large-scale geographic error. We then categorized each species 155	

according to the presence or absence in tropical and extratropical regions, leading to three 156	

discrete geographical states: tropical, extratropical and widespread. This categorization was 157	

made considering the isocryme of 20ºC (Fig. 1) - mean sea surface temperature for the coldest 158	

month - as a latitudinal distribution limit for tropical marine fauna (Briggs, 1974). We also 159	

calculated the proportion of species in each of the three geographical states that were present in 160	

each family’s phylogeny (Table 1). 161	

 162	

Phylogenetic Comparative methods 163	

To test for differences in speciation, extinction and dispersal rates between tropical and 164	

extratropical regions, we used the model of “Geographic State Speciation and Extinction” 165	

(GeoSSE; Goldberg et al., 2011), implemented in the R package ‘diversitree’ (FitzJohn, 2012). 166	

This is a phylogenetic comparative method that uses a similar mathematical formulation as the 167	

BiSSE (“Binary State Speciation and Extinction”) model, but enables tests of evolutionary rates 168	

associated with geographical states rather than with discrete character states. Recent concerns 169	

have been raised about the BiSSE and related methods (Rabosky & Goldberg, 2015), regarding 170	

the possibility of phylogenetic pseudoreplication and high Type I error rates associated with 171	

speciation estimates. To mitigate these potential biases we employed three approaches: (1) We 172	
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replicate the GeoSSE models across families of varying size and tip state ratio (Table 1). (2) 173	

We built models using the “Hidden State Speciation and Extinction” (HiSSE) framework 174	

(Beaulieu & O’Meara, 2016), a new approach which considers that unmeasured characters 175	

(‘hidden traits’)  related to the ones in the model might be influencing diversification estimates. 176	

(3) We run simulation models to explicitly access the Type I error rates associated with GeoSSE 177	

model in our data. By assessing models across multiple reef fish families we can identify robust 178	

patterns, and with the implementation of HiSSE we can explore the potential effects of 179	

unsampled character traits to deal with the problem of phylogenetic pseudoreplication. 180	

Simulation tests help to assure that our results are not examples of mistaken inferences by the 181	

models (Rabosky & Goldberg, 2015).  182	

The GeoSSE model included three speciation parameters: sTrop and sEx representing the 183	

divergence of an ‘endemic’ (restricted to a tropical or an extratropical range) ancestral species 184	

producing two daughters in the same geographical state, or a widespread lineage giving rise to 185	

tropical or extratropical endemic lineages; and sBtw representing the divergence of a widespread 186	

lineage between regions producing two daughter lineages, one in each geographical state. The 187	

parameters included in the model associated with extinction are: xTrop and xEx representing 188	

global lineage extinction or range contraction of a widespread lineage. The model also includes 189	

the dispersal parameter dTrop representing range expansion of tropical lineages and dEx 190	

representing range expansion of extratropical lineages. During model construction, all these 191	

parameters can be constrained or allowed to vary freely between regions. 192	

We used the four chronograms to test several models that were built according to the 193	

predictions of each evolutionary hypothesis proposed to explain the LDG. First, we built 194	

unconstrained (full) models in which the seven parameters were allowed to vary freely, 195	

representing the notation of the ‘out of the tropics’ model of evolution that predicts differences 196	
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in all rates. We also built models by constraining all rates to be equal among regions, 197	

representing the ‘evolutionary time’ hypothesis that predicts no difference in evolutionary rates. 198	

To represent the ‘evolutionary speed’ hypothesis, we built models in which only speciation 199	

rates varied geographically, constraining extinction and dispersal rates to be equal among 200	

regions. Finally, we constrained speciation and extinction to fit the ‘niche conservatism’, that 201	

predicts higher dispersal rates from the extratropics to the tropical regions. As it is not possible 202	

to constrain the direction of parameter values when fitting our models, consistency with an 203	

evolutionary hypothesis depends on a superior fit and finding the correct parameter direction. 204	

From the four evolutionary models, we built four other sub-models by constraining the sBtw 205	

parameter to be equal to zero to assess the effect of between-region speciation mode in each 206	

family. These combinations resulted in a set of eight models varying from the fully 207	

unconstrained (‘out of the tropics’) model with seven parameters to the totally constrained 208	

(‘evolutionary time’) model with only three parameters (Table S1 - Appendix S1 in Supporting 209	

Information). 210	

For the modeling process, we implemented a searching procedure throughout the 211	

parameter space with 50 different combinations of initial parameters to assure we reached the 212	

maximum likelihood (global optimum). After that, we used one of these convergent results as 213	

starting values to run our models. We then compared our set of models using Akaike 214	

Information Criterion (AIC), choosing the best-fit model by the lowest delta AIC score 215	

(ΔAIC=0). To assess the power in model selection for our original data, we also used a Monte 216	

Carlo approach described by Boettiger et al. (2012). We simulated 100 phylogenies with 217	

parameters estimated under GeoSSE for each model (‘out of the tropics’, ‘evolutionary speed’, 218	

‘evolutionary time’ and ‘niche conservatism’), which resulted in four sets of 100 simulated 219	

phylogenies. Then, we assessed the distribution of likelihood ratio statistic (δ) values for each 220	
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set of simulated phylogenies by re-estimating and comparing model fit for the most complex 221	

model (‘out of the tropics’) against each respective simpler models (‘evolutionary speed’, 222	

‘evolutionary time’ and ‘niche conservatism’).  223	

After model selection, we estimated the parameters for the best-fit model in each family 224	

and sampled their posterior probability distributions using Markov chain Monte Carlo (MCMC) 225	

to account for estimate uncertainty. The MCMC was run for 1000 generations using exponential 226	

priors from the initial likelihood function. With the resulting samples from MCMC runs we 227	

calculated the net diversification rates of each family by subtracting extinction rates from 228	

speciation rates. Within the GeoSSE model it is possible to account for incomplete sampling 229	

by including the percentage of species from each geographical state that are present in the trees. 230	

We performed the modeling procedure as described above including the percentage of sampling 231	

species for each family’s phylogeny (Table 1). For a better visualization of changes through 232	

time in geographical states, we also performed a simple marginal ancestral state reconstruction 233	

with GeoSSE’s initial likelihood function (Figs. S1-S4 - Appendix S2 in Supporting 234	

Information). 235	

We compared the regular time-constant GeoSSE model to a recently modified version of 236	

this model that allows the incorporation of time dependency in evolutionary rates with a 237	

function developed by Rolland et al. (2014). This function was created to avoid a potential bias 238	

of time variance in the estimation of evolutionary rates. We implemented the time-variable 239	

model as in Rolland et al. (2014) for our four trees by assuming speciation rates to vary linearly 240	

as a function of time (s(t) = s0+rt), where s0 is the speciation rate at present, r is the component 241	

associated with the variation in speciation rate through time and t is the interval of time from 242	

the present to the past. As we were interested in the effect of time variation in speciation rates, 243	

dispersal and extinction rates were considered constant in the time-variable model. The results 244	
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of the best-fit time-constant model were compared with the correspondent time-variable model 245	

using AIC scores to investigate the robustness of the observed patterns. 246	

As the HiSSE method only deals with binary character states, we reclassified the 247	

widespread species as tropical or extratropical according to the predominant geographical range 248	

for each species. Since our GeoSSE models showed a higher diversification rate for tropical 249	

lineages (see results), we built, for each family, a character dependent model (BiSSE 250	

equivalent), and a character independent model in which we associated a “hidden” character 251	

state with the tropical state using the HiSSE notation. All models also included the percentage 252	

of species from each measured character state that were present in the phylogenies to deal with 253	

incomplete sampling. These models were compared using AIC scores to assess if the higher 254	

tropical diversification rates were indeed associated with the geographical character or if it is 255	

likely that other unmeasured character could account for the differences observed. We 256	

implemented these analyses in the R package ‘hisse’ (Beaulieu & O’Meara, 2016). 257	

We assessed the Type I error rates associated with the GeoSSE model for our four families 258	

by building models with simulated neutral traits. By using the package ‘diversitree’, we 259	

simulated 100 phylogenies with initial parameters estimated from our totally constrained model 260	

(‘evolutionary time’) of the empirical GeoSSE model and with respective number of tips for 261	

each family. For each of these neutral trees, we estimated parameters from an unconstrained 262	

GeoSSE likelihood function and accessed the posterior distribution of estimated parameters 263	

using MCMC for 1000 generations. These distributions of likelihood ratios for each parameter 264	

were compared to check if there were differences among regions and the Type I error rates were 265	

calculated based on the proportion of neutral trees in which the estimated parameters differed 266	

among geographical regions. As suggested by Rabosky & Goldberg (2015), we employed the 267	

results from the simulations to adjust the critical value of significance by dividing the threshold 268	
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of 0.05 by the growth rate of spurious results (Type I error rates/0.05) for each parameter in the 269	

four families with the empirical dataset. For those parameters in which the Type I error rates 270	

were below the threshold of 0.05, we kept this value as the critical significance level.  271	

 272	

RESULTS 273	

The families Chaetodontidae, Labridae and Pomacentridae contain predominantly 274	

tropical species, while the Sparidae has more extratropical than tropical species (Table 1). The 275	

set of best supported GeoSSE models showed that tropical lineages have higher speciation rates 276	

in all families (Fig. 2; Table 2). However, the results for extinction and dispersal rates varied 277	

among families.  278	

For Chaetodontidae, the best supported model was the ‘out of the tropics’ model that 279	

prohibits between-region speciation (Table 2). Within this model, extinction rate was higher for 280	

extratropical lineages (Fig. 2A; Table 2). Dispersal rate was higher for tropical lineages 281	

expanding ranges into extratropical regions rather than the reverse (Fig. 2A; Table 2). 282	

Considering that speciation rate was higher in the tropics, we found that net diversification rate 283	

was negative for extratropical lineages (-0.446 lineages Myr-1) and positive for tropical lineages 284	

(0.132 lineages Myr-1; Fig. 2A).  285	

The best-fit model for Labridae was also the ‘out of the tropics’ model prohibiting 286	

between-region speciation (Table 2). The estimate for extinction rate in this model was higher 287	

for extratropical lineages (Fig. 2B; Table 2), and the dispersal rate was found to be higher for 288	

tropical lineages expanding ranges into the extratropics (Fig. 2B; Table 2). Based on speciation 289	

and extinction estimates, we found positive diversification rates for both tropical (0.123 290	

lineages Myr-1) and extratropical lineages (0.026 lineages Myr-1), although tropical net 291	

diversification was almost five times higher (Fig. 2B).  292	
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For Pomacentridae the best-fit model was the ‘evolutionary speed’ model permitting 293	

between-region speciation (Fig. 2C; Table 2). The estimated value for the between-region 294	

speciation was similar to that estimated for extratropical speciation. Extinction rate was low for 295	

both tropical and extratropical lineages, causing the difference found for speciation rates to be 296	

the major influence in the observed difference in diversification rate among regions. We found 297	

a higher tropical net diversification rate (0.108 lineages Myr-1) compared with the extratropics 298	

(0.029 lineages Myr-1; Fig. 2C). 299	

Within the Sparidae, the best supported model was also the ‘out of the tropics’ model, but 300	

permitting between-region speciation (Fig. 2D; Table 2). The estimated between-region 301	

speciation was lower than extratropical and tropical speciation rates in this model. Dispersal 302	

rate was higher for tropical lineages expanding ranges into the extratropics rather than in the 303	

opposite direction (Fig. 2D; Table 2). As in the Pomacentridae, the estimated extinction rate for 304	

Sparidae was low for both regions, which resulted in a higher tropical net diversification rate 305	

(0.062 lineages Myr-1) compared with the extratropics (0.033 lineages Myr-1; Fig. 2D). 306	

Although the AIC results supported the ‘out of the tropics’ as the best model for 307	

Chaetodontidae, Labridae and Sparidae (Table 2), our simulations for model selection showed 308	

that given the available phylogenetic data, it is not possible to discriminate this model from the 309	

‘evolutionary speed’ in all four families (Figure S5). Therefore, we can consider that these two 310	

models equally fit our data. These results do not change the overall picture since the speciation 311	

rates estimated under the ‘evolutionary speed’ model were still higher for tropical lineages in 312	

all families, however it limits our inferences about the roles of extinction and dispersal. 313	

When we considered time variation in evolutionary rates, the models received little 314	

support compared to time-constant models in Pomacentridae and Sparidae (Table S2), 315	

indicating little variation in rates through time. For Chaetodontidae and Labridae, the time-316	
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variable model received support against the time-constant model, indicating that evolutionary 317	

rates varied through time in these families. However, the differences among tropical and 318	

extratropical rates showed the same pattern as in the time-constant models (Table S2), which 319	

highlights the robustness of the predicted differences among regions in the these models. 320	

The comparison of character dependent (BiSSE equivalent) and character independent 321	

(HiSSE) models showed that for the Chaetodontidae, Pomacentridae and Sparidae, the presence 322	

of unmeasured characters could not account for rate differences, since the character dependent 323	

model received more support (Table S3). The pattern of higher tropical diversification rates 324	

was maintained in the character dependent model for these families, which is consistent with 325	

GeoSSE results. However, for Labridae, the character independent model received more 326	

support (Table S3), indicating that some unmeasured character might be driving the pattern of 327	

higher tropical diversification. When we plotted the net diversification along the labrid 328	

phylogeny, we detected higher rates associated with the tropical clade that includes the genus 329	

Thalassoma + Gomphosus and the tropical clade including the genus Scarus + Chlorurus (Fig. 330	

3). These results does not invalidate the GeoSSE results as extratropical lineages were still 331	

associated with lower net diversification rates, however, they show that most tropical lineages 332	

had intermediate diversification rates, while two tropical clades displayed exceptionally higher 333	

net diversification (Fig. 3; Table S3).  334	

The simulation results showed that the Type I error rates of the GeoSSE model are 335	

moderate to low.  For speciation rates, the maximum error rates were 0.1 in Chaetodontidae, 336	

while for net diversification we detected an error rate of 0.11 in the Labridae (Table S4). For 337	

all other parameters, the GeoSSE model performed well in all families and we found Type I 338	

error rates around 0.06 and 0.09 with some remaining below the 0.05 threshold. By using these 339	
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values to adjust the critical significance value for the empirical dataset, we found no differences 340	

in results of parameter comparisons among geographical regions (Fig. 2). 341	

 342	

DISCUSSION  343	

We found marked differences in tropical and extratropical evolutionary rates with tropical 344	

lineages showing higher diversification, mainly driven by more speciation in the tropics. In 345	

addition, we report a tendency of higher dispersal rates for tropical lineages expanding ranges 346	

into the extratropics. This suggests that the majority of extratropical lineages have arisen from 347	

tropical ones. These results support the predictions of the ‘out of the tropics’ model of evolution 348	

(Jablonski et al., 2006), although we also found support for the ‘evolutionary speed’ hypothesis 349	

(Rohde, 1992). Our results confirm the tropics as an important evolutionary engine for marine 350	

environments (Briggs, 2003), and highlight the complementarity of the predictions concerning 351	

the evolutionary dynamics behind latitudinal differences in biodiversity for reef fishes. 352	

Moreover, we find that two tropical Labridae lineages exhibit exceptionally higher 353	

diversification than that expected by latitudinal differences alone.  354	

Most reef fishes depend on available coral reef habitats, so geological climatic changes 355	

that affected these environments might have also had a negative influence in their persistence 356	

(Cowman & Bellwood, 2011; Pellissier et al., 2014). The areas in which coral reef habitats 357	

remained stable over geological times served as refugia from extinction during periods of 358	

drastic climatic fluctuations, such as the Pleistocene glacial cycles (Pellissier et al., 2014). Even 359	

though habitat loss resulting from climatic oscillations and tectonic activity are likely to have 360	

caused extinctions in tropical fish and other reef associated lineages in the past (Renema et al., 361	

2008), fracturing and isolation of refugia may have also increased potential for speciation in 362	

some tropical regions (Pellissier et al., 2014). Our results show that this effect might be less 363	
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pronounced for extratropical lineages, with the lack of fragmented or stable extratropical 364	

refugia resulting in lower rates of speciation. Peripheral extratropical reefs may have 365	

historically acted as reef fish biodiversity sinks. In particular for Chaetodontidae, the estimated 366	

negative net diversification indicates that the extratropics might be a recipient of lineages 367	

through speciation and dispersal from the tropics with little subsequent speciation to counteract 368	

the extratropical higher rate of extinction. 369	

Patterns of diversification have previously been examined for several reef fish groups, 370	

with reef association linked to higher clade diversity (Alfaro et al., 2007; Cowman & Bellwood, 371	

2011). Here, we show that reef fish diversification patterns also follow a clear geographical 372	

trend of higher diversification rates for tropical lineages compared to extratropical ones. Our 373	

estimated values for tropical net diversification in Chaetodontidae, Labridae and Pomacentridae 374	

are very similar to whole family estimates calculated by Cowman & Bellwood (2011), 375	

reflecting the predominance of tropical species within these families. As for Sparidae, our 376	

finding of a higher tropical lineage diversification is a surprising result considering that most 377	

of the contemporary species within this family are associated with extratropical environments. 378	

This suggests that the actual species richness distribution within this family might be greatly 379	

influenced by lineage dispersal. By comparing our results to other works that used a similar 380	

approach but different taxa (Pyron & Wiens, 2013; Pyron, 2014; Rolland et al., 2014), it is 381	

possible to infer that higher tropical net diversification might be a general pattern for vertebrates 382	

across different phylogenetic scales and in both terrestrial and marine environments.  383	

In addition to the geographical results, we show that exceptionally high rates of lineage 384	

diversification are associated with two predominantly tropical clades in the family Labridae. 385	

Similar rate shifts in the Labridae have been reported previously (Alfaro et al., 2009), associated 386	

with the tribe Julidines and a clade containing Scarus + Chlorurus. Here, we show that the rate 387	
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shifts previously reported to be associated with the Julidines might represent a trickle-down 388	

effect driven by the sub-clade including Thalassoma + Gomphosus (Fig. 3). In the case of 389	

Scarus + Chlorurus, the previously identified shift in diversification rate was associated with 390	

their pronounced dichromatism and other social and behavioral characters related to sexual 391	

selection (Alfaro et al., 2009; Kazancioglu et al., 2009). It is possible that this same trait might 392	

also explain an elevated diversification rate in the clade Thalassoma + Gomphosus, since 393	

species within this group also display extreme sexual dichromatism (Kuiter, 2010). If true, then 394	

these two tropical clades might have undergone a sequential pattern of diversification 395	

(Streelman & Danley, 2003) driven by the development of complex mating behaviors and 396	

phenotype throughout sexual selection. But, a number of other factors could also be involved. 397	

Both clades also have a complex longitudinal biogeographic history (Cowman & Bellwood, 398	

2013). Both clades have pantropical distributions (Choat et al., 2012; Bernardi et al., 2004), 399	

and in the case of Thalassoma, speciation and rapid range overlap have already been identified 400	

(Quenouille et al., 2011). Other functional traits such as diet have also been shown to play an 401	

important role in diversification rate differences (Lobato et al., 2014). Further research is 402	

needed to tease apart the geographic and ecological components of speciation in these clades. 403	

Although some caution has been raised recently about the SSE methods (Davis et al., 404	

2013; Rabosky & Goldberg, 2015), the differences in rate estimates we observe in the present 405	

study are consistent across families in the modeling procedure and robust when accounting for 406	

time variation. Moreover, our simulation results show that the Type I error rates from the 407	

GeoSSE model might be well below those found for the BiSSE model (Rabosky & Goldberg, 408	

2015), which reinforces the robustness of the differences found among geographical regions. 409	

With the Monte Carlo method, we also assessed the power of our analysis to detect real 410	

differences between models, which has been considered a major issue in phylogenetic 411	
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comparative methods (Boettiger et al., 2012). The results from this model selection framework 412	

showed that both the ‘out of the tropics’ and the ‘evolutionary speed’ models equally fit our 413	

data and the direction of parameters estimated by these models were consistent with each 414	

evolutionary hypothesis. This highlights that differential rates of speciation have played a major 415	

and consistent role in the latitudinal differences in biodiversity for reef associated fishes, 416	

although we cannot discard extinction and dispersal as possible drivers of this pattern. 417	

Our results emphasize a climatic component influencing the biodiversity pattern for reef 418	

fishes, however we do not rule out the influence of other processes that are also known to have 419	

generated and maintained reef fish diversity through time. Processes such as tectonic activity, 420	

changes in sea level, oceanographic conditions and geomorphological configuration are also 421	

recognized as important drivers of extant patterns of reef fish diversity (Renema et al., 2008; 422	

Bellwood et al., 2012). While these processes have been associated with the marked 423	

longitudinal diversity gradient presented by reef fishes and other reef associated organisms, 424	

their influence on the latitudinal gradient has yet to be fully determined. A better understanding 425	

of how these processes influenced the evolution of reef fishes by altering rates of speciation, 426	

extinction and dispersal is needed. This will allow us to disentangle the historical, 427	

biogeographic and environmental factors and how they have interacted to shape global reef fish 428	

diversity patterns. 429	

 430	

CONCLUSIONS 431	

Our study suggests that the tropics enhance lineage origination and may have reduced 432	

lineage extinction rates in reef fishes while being a fountain of evolutionary lineages to 433	

extratropical environments. We also highlight two tropical lineages in the family Labridae 434	

which have undergone sequential diversification potentially associated with extreme sexual 435	
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dichromatism. Alternatively, higher diversification in these clades might have been driven by 436	

longitudinal biogeography across the marine tropics. Hence, our study proposes that speciation, 437	

extinction and dispersal are key processes that generate and maintain higher tropical reef fish 438	

species richness. To our knowledge, this is the first time that these processes have been 439	

examined across multiple reef fish groups to reveal the mechanisms that promote latitudinal 440	

differences in biodiversity. We suggest that further studies should explore how these 441	

macroevolutionary dynamics influence other patterns in marine biodiversity. 442	
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TABLES 578	

Table 1. Absolute number of species represented in phylogenies and the respective proportion in relation 579	

to all recognized species by family in each character state: widespread (Wide), tropical (Trop), 580	

extratropical (Extra). 581	

Family Chaetodontidae Labridae Pomacentridae Sparidae 
State Wide Trop Extra Wide Trop Extra Wide Trop Extra Wide Trop Extra 
Species 32 58 5 80 169 54 25 174 7 33 24 34 
% in Phylo 0.89 0.71 0.56 0.62 0.44 0.67 0.57 0.56 0.33 0.83 0.59 0.79 

 582	

  583	



	
	

	

25	

Table 2. Comparison between models constructed under GeoSSE for each family ordered by Delta AIC 584	

(ΔAIC), with respective degrees of freedom (d.f.), log-likelihood (lnL) and Akaike Information Criterion 585	

(AIC). Parameter estimates are: tropical speciation (sTrop), extratropical speciation (sEx), between regions 586	

speciation (sBtw), tropical extinction (xTrop), extratropical extinction (xEx), dispersal from the tropics 587	

(dTrop), dispersal from the extratropics (dEx). 588	

 589	

 590	

 591	

Models d.f. lnL AIC ΔAIC sTrop sEx sBtw xTrop xEx dTrop dEx 
Chaetodontidae            
Out of the tropics (sBtw=0) 6 -332.9 677.9 0 2.7 e-01 3.6 e-02 - 1.4 e-01 4.8 e-01 3.2 e-01 3.9 e-08 
Out of the tropics 7 -332.9 679.9 2.0 2.7 e-01 3.5 e-02 2.4 e-10 1.4 e-01 4.8 e-01 3.2 e-01 2.3 e-08 
Evolutionary speed (sBtw=0) 4 -336.0 680.1 2.2 2.8 e-01 3.5 e-02 - 1.5 e-01 - 1.5 e-01 - 
Evolutionary speed 5 -336.0 682.1 4.2 2.8 e-01 3.5 e-02 1.5 e-08 1.5 e-01 - 1.5 e-01 - 
Niche conservatism 5 -336.3 682.7 4.8 1.2 e-01 - 5.3 e-01 2.9 e-01 - 1.7 e-01 3.0 
Niche conservatism (sBtw=0) 4 -337.4 682.9 5.0 2.4 e-01 - - 2.9 e-01 - 1.0 e-01 1.6 
Evolutionary time (sBtw=0) 3 -347.1 700.3 22.4 1.9 e-01 - - 7.0 e-02 - 9.5 e-02 - 
Evolutionary time 4 -347.1 702.3 24.4 1.9 e-01 - 8.4 e-09 7.0 e-02 - 9.5 e-02 - 
Labridae            
Out of the tropics (sBtw=0) 6 -1279.6 2571.2 0 1.2 e-01 6.1 e-02 - 5.6 e-07 3.5 e-02 4.9 e-02 8.2 e-03 
Out of the tropics 7 -1279.6 2573.4 2.2 1.2 e-01 5.9 e-02 3.3 e-06 3.8 e-07 4.2 e-02 5.2 e-02 4.5 e-06 
Evolutionary speed (sBtw=0) 4 -1284.7 2577.4 6.2 1.3 e-01 2.3 e-02 - 7.1 e-03 - 3.3 e-02 - 
Evolutionary speed 5 -1284.7 2579.4 8.2 1.3 e-01 5.3 e-02 6.3 e-09 7.1 e-03 - 3.3 e-02 - 
Evolutionary time (sBtw=0) 3 -1306.5 2619.0 48.2 1.0 e-01 - - 9.2 e-03 - 3.0 e-02 - 
Niche conservatism (sBtw=0) 4 -1305.7 2619.4 48.6 1.0 e-01 - - 8.1 e-03 - 3.3 e-02 7.4 e-07 
Evolutionary time 4 -1306.5 2621.0 50.2 1.0 e-01 - 8.1 e-07 9.1 e-03 - 3.0 e-02 - 
Niche conservatism 5 -1305.7 2621.4 50.6 1.0 e-01 - 1.2 e-06 8.2 e-03 - 3.3 e-02 6.2 e-06 
Pomacentridae            
Evolutionary speed 5 -813.7 1637.5 0 1.0 e-01 2.9 e-02 1.7 e-02 5.8 e-09 - 1.5 e-02 - 
Evolutionary speed (sBtw=0) 4 -815.7 1639.5 2 1.1 e-01 3.7 e-02 - 8.9 e-03 - 1.5 e-02 - 
Out of the tropics 7 -813.6 1641.2 3.7 1.0 e-01 3.6 e-02 1.7 e-02 5.2 e-10 2.0 e-02 1.8 e-02 1.0 e-02 
Out of the tropics (sBtw=0) 6 -815.0 1642.1 4.6 1.0 e-01 5.5 e-02 - 3.6 e-07 4.9 e-02 2.1 e-02 7.9 e-03 
Niche conservatism (sBtw=0) 4 -821.1 1650.2 12.7 1.0 e-01 - - 9.4 e-03 - 1.1 e-02 6.6 e-02 
Niche conservatism 5 -820.1 1650.3 12.8 1.0 e-01 - 1.7 e-02 3.9 e-03 - 1.1 e-02 7.7 e-02 
Evolutionary time (sBtw=0) 3 -822.3 1650.7 13.2 1.0 e-01 - - 4.8 e-03 - 1.3 e-02 - 
Evolutionary time 4 -821.6 1651.3 13.8 1.0 e-01 - 1.0 e-02 1.8 e-03 - 1.3 e-02 - 
Sparidae            
Out of the tropics 7 -429.3 872.7 0 6.2 e-02 3.3 e-02 1.6 e-02 2.3 e-07 2.4 e-07 6.7 e-02 7.1 e-03 
Evolutionary speed  5 -433.5 877.0 4.3 1.6 e-02 2.8 e-07 2.2 e-01 2.8 e-03 - 1.2 e-01 - 
Out of the tropics (sBtw=0) 6 -432.5 877.1 4.4 6.6 e-02 4.2 e-02 - 4.5 e-03 1.4 e-02 7.6 e-02 5.4 e-03 
Evolutionary time (sBtw=0) 4 -435.3 878.6 5.9 8.4 e-03 - 2.2 e-01 4.1 e-03 - 1.2 e-01 - 
Niche conservatism (sBtw=0) 4 -435.4 878.8 6.1 5.4 e-02 - - 8.1 e-03 - 6.0 e-02 1.9 e-02 
Evolutionary time 3 -436.8 879.7 7.0 5.5 e-02 - - 1.0 e-02 - 4.0 e-02 - 
Niche conservatism 5 -435.2 880.4 7.7 8.8 e-03 - 2.1 e-01 3.6 e-03 - 1.3 e-01 1.1 e-01 
Evolutionary speed (sBtw=0) 4 -436.6 881.3 8.6 6.0 e-02 5.2 e-02 - 9.8 e-03 - 3.9 e-02 - 
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FIGURE LEGENDS 592	

Figure 1. Map showing tropical (red) and extratropical (blue) reef locations around the world defined 593	

by the isocrym of 20°C, which is considered the latitudinal distribution limit for tropical marine fauna 594	

(Briggs, 1974). 595	

 596	

Figure 2. Rates of speciation, extinction and net diversification (speciation minus extinction) for tropical 597	

(red) and extratropical (blue) lineages of four reef fish families. Dispersal rates are also shown with 598	

tropical lineages expanding ranges into extratropical environments (green) and extratropical lineages 599	

expanding ranges into the tropics (yellow). Probability density plots are based on 1000 Markov Chain 600	

Monte Carlo samples of the best-fit model for each family under GeoSSE. Vertical lines represent 601	

parameter estimates based on Maximum Likelihood of the best-fit GeoSSE model for each family. 602	

Credibility intervals were adjusted by the Type I error rates calculated for each parameter using the 603	

results from GeoSSE simulations in each family. For Pomacentridae and Sparidae the best-fit model 604	

permitted the between regions speciation parameter (purple) to be > 0. For Pomacentridae, dispersal and 605	

extinction were found to be equal for both tropical and extratropical lineages (shown in grey). 606	

 607	

Figure 3. Labridae phylogeny built under HiSSE notation, showing tropical lineages (black branches) 608	

and extratropical lineages (white branches), with respective net diversification rates (color gradient from 609	

blue – lower diversification – to red – higher diversification). Four clades are highlighted, being two 610	

tropical clades with high net diversification rates (Scarus + Chlorurus and Thalassoma + Gomphosus), 611	

and two extratropical clades with low net diversification rates (Labrines and Odacines). The graph shows 612	

the frequency of net diversification rates on the tips of the phylogeny, highlighting that there are few 613	

lineages with high rates and more lineages with lower to intermediate rates.  614	

 615	

 616	
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FIGURES 617	
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