48 research outputs found

    Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming

    Get PDF
    This paper deals with an analysis of the Conjugate Gradient (CG) method (Hestenes and Stiefel in J Res Nat Bur Stand 49:409-436, 1952), in the presence of degenerates on indefinite linear systems. Several approaches have been proposed in the literature to issue the latter drawback in optimization frameworks, including reformulating the original linear system or recurring to approximately solving it. All the proposed alternatives seem to rely on algebraic considerations, and basically pursue the idea of improving numerical efficiency. In this regard, here we sketch two separate analyses for the possible CG degeneracy. First, we start detailing a more standard algebraic viewpoint of the problem, suggested by planar methods. Then, another algebraic perspective is detailed, relying on a novel recently proposed theory, which includes an additional number, namely grossone. The use of grossone allows to work numerically with infinities and infinitesimals. The results obtained using the two proposed approaches perfectly match, showing that grossone may represent a fruitful and promising tool to be exploited within Nonlinear Programming

    How grossone can be helpful to iteratively compute negative curvature directions

    Get PDF
    We consider an iterative computation of negative curvature directions, in large scale optimization frameworks. We show that to the latter purpose, borrowing the ideas in [1, 3] and [4], we can fruitfully pair the Conjugate Gradient (CG) method with a recently introduced numerical approach involving the use of grossone [5]. In particular, though in principle the CG method is well-posed only on positive definite linear systems, the use of grossone can enhance the performance of the CG, allowing the computation of negative curvature directions, too. The overall method in our proposal significantly generalizes the theory proposed for [1] and [3], and straightforwardly allows the use of a CG-based method on indefinite Newton’s equations

    Objective and violation upper bounds on a DIRECT-filter method for global optimization

    Get PDF
    This paper addresses the problem of solving a constrained global optimization problem using a modification of the DIRECT method that incorporates the filter methodology to simultaneously minimize the objective function and the constraints violation. Thus, in the “Selection” step of the herein proposed DIRECT-filter algorithm, the hyperrectangles are classified in four categories and subsequently handled separately. The new algorithm also imposes upper bounds on the objective function and constraints violation aiming to discard some hyperrectangles from the process of identifying the potentially optimal ones. A heuristic to avoid the exploration of the hyperrectangles that have been mostly divided is also implemented. Preliminary numerical experiments are carried out to show the effectiveness of the imposed upper bounds on the objective and violation as well as the goodness of the heuristic.The authors wish to thank two anonymous referees for theircomments and suggestions to improve the paper. This work has been supported by FCT{ Fundação para a CiĂȘncia e Tecnologia within the Projects Scope: UID/CEC/00319/2019 and UID/MAT/00013/2013

    Penalty-based heuristic direct method for constrained global optimization

    Get PDF
    This paper is concerned with an extension of the heuristic DIRECT method, presented in[8], to solve nonlinear constrained global optimization (CGO) problems. Using a penalty strategy based on a penalty auxiliary function, the CGO problem is transformed into a bound constrained problem. We have analyzed the performance of the proposed algorithm using fixed values of the penalty parameter, and we may conclude that the algorithm competes favourably with other DIRECT-type algorithms in the literature.The authors wish to thank two anonymous referees for their comments and suggestions to improve the paper. This work has been supported by FCT – Fundação para a CiĂȘncia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM

    Filter-based DIRECT method for constrained global optimization

    Get PDF
    This paper presents a DIRECT-type method that uses a filter methodology to assure convergence to a feasible and optimal solution of nonsmooth and nonconvex constrained global optimization problems. The filter methodology aims to give priority to the selection of hyperrectangles with feasible center points, followed by those with infeasible and non-dominated center points and finally by those that have infeasible and dominated center points. The convergence properties of the algorithm are analyzed. Preliminary numerical experiments show that the proposed filter-based DIRECT algorithm gives competitive results when compared with other DIRECT-type methods.The authors would like to thank two anonymous referees and the Associate Editor for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacžao para a CiĂȘncia e Tecnologia within the projects UID/CEC/00319/2013 and ˆ UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    Volcano eruption algorithm for solving optimization problems

    Get PDF
    This is an accepted manuscript of an article published by Springer in Neural Computing and Applications on 30/06/2020, available online at https://doi.org/10.1007/s00521-020-05124-x The accepted version of the publication may differ from the final published version.Meta-heuristic algorithms have been proposed to solve several optimization problems in different research areas due to their unique attractive features. Traditionally, heuristic approaches are designed separately for discrete and continuous problems. This paper leverages the meta-heuristic algorithm for solving NP-hard problems in both continuous and discrete optimization fields, such as nonlinear and multi-level programming problems through extensive simulations of volcano eruption process. In particular, a new optimization solution named Volcano Eruption Algorithm (VEA) proposed in this paper, which is inspired from the nature of volcano eruption. The feasibility and efficiency of the algorithm are evaluated using numerical results obtained through several test problems reported in the state-of-theart literature. Based on the solutions and number of required iterations, we observed that the proposed meta-heuristic algorithm performs remarkably well to solve NP-hard problem. Furthermore, the proposed algorithm is applied to solve some large-size benchmarking LP and Internet of Vehicles (IoV) problems efficiently
    corecore