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Abstract. This paper addresses the problem of solving a constrained
global optimization problem using a modification of the DIRECTmethod
that incorporates the filter methodology to simultaneously minimize the
objective function and the constraints violation. Thus, in the “Selection”
step of the herein proposed DIRECT-filter algorithm, the hyperrectan-
gles are classified in four categories and subsequently handled separately.
The new algorithm also imposes upper bounds on the objective function
and constraints violation aiming to discard some hyperrectangles from
the process of identifying the potentially optimal ones. A heuristic to
avoid the exploration of the hyperrectangles that have been mostly di-
vided is also implemented. Preliminary numerical experiments are car-
ried out to show the effectiveness of the imposed upper bounds on the
objective and violation as well as the goodness of the heuristic.
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1 Introduction

The paper aims to address the use of the filter methodology [1] combined with a
DIRECT-type method [2] to globally solve non-smooth and non-convex con-
strained optimization problems. The constrained global optimization (CGO)
problem has the form:

min
x∈Ω

f(x)

subject to h(x) = 0
g(x) ≤ 0,

(1)

where f : Rn → R, h : Rn → Rm and g : Rn → Rp are nonlinear continu-
ous functions and Ω = {x ∈ Rn : −∞ < li ≤ xi ≤ ui < ∞, i = 1, . . . , n}.
Since convexity is not assumed, many local minima may exist in the feasible
region, although we require only a global solution. For non-smooth problems,
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the derivative-free methods are the most appropriate. Popular methods to solve
problem (1) combine a penalty term, which depends on a constraint violation
measure, with the objective function to give the so-called penalty function. The
penalty term aims to penalize f whenever an approximation point is found that
is infeasible. Penalty functions within a DIRECT-type framework are proposed
in [3,4]. An auxiliary function that combines in a special manner information on
the objective and constraints is presented in [5]. Other techniques that involve
the handling of the objective function and constraints violation separately can
be found in [6,7,8].

This paper addresses the exploration of the DIRECT method in order to solve
CGO problems. It uses the filter methodology [1] to handle the constraints. The
objective function and the constraints violation measure are separately handled
and both simultaneously minimized. The main differences relative to the work
reported in [8] are the following:

1. four categories of hyperrectangles (according to the violation measure and
the non-dominance vs dominance feature of their center points) are defined
instead of three;

2. upper bounds on the objective and violation values are imposed during the
selection step in order to reduce the number of explored hyperrectangles;

3. a heuristic is used to prevent the mostly divided hyperrectangles to be se-
lected and identified as potentially optimal.

The paper is organized as follows. Section 2 briefly presents some ideas and
the main steps of the DIRECT method. Section 3 describes the proposed ex-
tension to handle CGO problems, in particular, the use of a filter method to
classify each hyperrectangle according to its non-dominance/dominance feature
and constraints violation magnitude. Further, the strategy that imposes upper
bounds on f and violation values, as well as the heuristic are exposed. Finally,
Sect. 4 contains the results of our preliminary numerical experiments and we
conclude the paper with the Sect. 5.

2 Features about DIRECT Method

The DIRECT (DIviding RECTangles) algorithm, originally proposed to solve
bound constrained global optimization problems, assumes that the objective
function, f , is a continuous function and creates finer and finer partitions of the
hyperrectangles generated from the set Ω [2,9,10]. The algorithm is a modifica-
tion of the standard Lipschitzian approach, in which f is assumed to satisfy the
Lipschitz condition

|f(x1)− f(x2)| ≤ K∥x1 − x2∥ for all x1, x2 ∈ Ω,

where the Lipschitz constant K > 0 is viewed as a weighting parameter that
indicates how much emphasis to place on global versus local search.
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DIRECT is a deterministic and derivative-free method that is able to explore
optimal regions aiming to converge to the global optimum and at the same time
avoiding being trapped in a local optimum.

DIRECT is described by six main steps: “Initialization”, “Selection”, “Sam-
pling”, “Division”, “Iteration” and “Termination” [2,11,12].

The “Selection” step serves the purpose of identifying the set of indices of
hyperrectangles that are the most promising, denoted by potentially optimal
hyperrectangles (POH), based on the current partition of Ω. In the “Sampling”
steps, the set of dimensions with the maximum size in each POH is identified
to define points where the objective function is evaluated. For the “Division”
step, DIRECT uses two measures: (i) the size of the hyperrectangle to favor
the global search feature of the algorithm; (ii) the value of the hyperrectangle
to give preference to the local search feature. The value corresponds to the
objective function value alone at the center, for bound constrained problems
(and to the objective function and constraint violation values, when problem (1)
is addressed).

For further details on the original DIRECT and other recent interesting mod-
ifications, we refer the reader to [13,14,15,16,17,18,19,20].

3 DIRECT-filter Method

In this section, we reveal how the DIRECT algorithm is extended to incorporate
the filter methodology in order to minimize both the objective function and
constraints violation. First, we briefly present the filter methodology and the
proposed extensions to be incorporated in the main steps of DIRECT. Second,
the strategy that uses the upper bounds on objective and violation values and
the heuristic to avoid the selection of the mostly divided hyperrectangles are
presented.

3.1 Filter Methodology

Based on the filter methodology [1,21], the problem (1) is reformulated into the
following bound constrained bi-objective optimization problem:

min
x∈Ω

(θ(x), f(x)) , (2)

where θ(x) = ∥h(x)∥1+∥g(x)+∥1 is a non-negative function to measure equality
and inequality constraints violation, and g+ ∈ Rp is defined componentwise by
max{0, gi}, i = 1, . . . , p. A point x is feasible when θ(x) = 0 and is infeasible
when θ(x) > 0. While minimizing the constraints violation, θ, and the objective
function, f , the filter method builds a region of dominated points that will not
be accepted as new approximations to the solution. The concept of dominance
arises from the multi-objective optimization area:
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Definition 1. A point x, or the corresponding pair (θ(x), f(x)), is said to dom-
inate y, or the corresponding pair (θ(y), f(y)), denoted by x ≺ y, if and only
if

θ(x) ≤ θ(y) and f(x) ≤ f(y),

with at least one inequality being strict.

The filter F contains a finite set of pairs (θ(x), f(x)), none of which is dominated
by any of the others, and the corresponding points x are known as the non-
dominated points [1].

Let x(k) be a trial point (approximation to the optimal solution of the CGO
problem (1)) and Fk be the filter, at iteration k, of the algorithm. To avoid the
acceptance of the trial point, or the corresponding pair (θ(x(k)), f(x(k))), that
is arbitrary close to the boundary of the filter, the conditions of acceptability
define an envelope around the filter and are as follows:

θ(x(k)) ≤ (1− γ)θ(xl) or f(x(k)) ≤ f(xl)− γθ(xl) (3)

for all points xl that correspond to pairs (θ(xl), f(xl)) in the filter Fk, where
γ ∈ (0, 1) is fixed. When the point is acceptable to the filter, the filter is updated
and whenever a point is added to the filter, all the dominated points are removed
from the filter.

We note that the filter contains only infeasible points. However, the feasible
point with the least function value, denoted by fbest, is saved and is used to filter
other feasible points.

3.2 Identifying POH in the DIRECT-filter Method

In the context of solving a CGO problem, the herein proposed algorithm defines
two separate regions within the usually called infeasible region. One is denoted
by “infeasible” region (identified by I) and contains hyperrectangles with center
points cj that satisfy θ(cj) > θfeas, for a sufficiently small positive tolerance
θfeas. The other is called “feasible-band” region (identified by FB) and con-
tains the hyperrectangles with center points that satisfy 0 < θ(cj) ≤ θfeas. On
the other hand, the herein coined “feasible” region (identified with F ) contains
hyperrectangles with θ(cj) = 0.

When applying a DIRECT-type method, in the partition of {Hi : i ∈ Ik}
of iteration k, using the filter methodology and the three regions above defined,
the identification of POH (in the “Selection” step) is implemented separately for
the following four sets of indices:

– the set I
FB/ND+b
k , contains indices of hyperrectangles with center points

in the “feasible-band” region that are non-dominated (FB/ND), appended
with the index of the hyperrectangle that corresponds to fbest (+b);

– the set I
FB/D+F\b
k contains the indices of hyperrectangles with center points

in the “feasible-band” region that are dominated (FB/D), appended with
the indices of the hyperrectangles with centers in the region F except b
(+F \ b);
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– the set I
I/ND
k contains the indices of hyperrectangles with non-dominated

center points that are in the “infeasible” region (I/ND);

– the set I
I/D
k contains the indices of hyperrectangles with dominated center

points that belong to the “infeasible” region (I/D).

As usual, the hyperrectangles are organized by groups of the same size. The
proposed strategy aims to identify, from each hull, indices of promising hyper-
rectangles, in terms of the

– optimality measure f , when the indices for exploration belong to the sets
IFB/ND+b and IFB/D+F\b;

– feasibility measure θ, when the indices belong to the sets II/ND and II/D.

Thus, in this filter-type method context, the algorithm identifies POH with
respect to (w.r.t.) f , using the following definition [2]:

Definition 2. Given the partition {Hi : i ∈ I} of Ω, let ϵ be a positive constant
and let fmin be the current best function value among center points in the regions
“feasible” and “feasible-band”. A hyperrectangle j is said to be potentially optimal
w.r.t. f if there exists some rate-of-change constant K̂ > 0 such that

f(cj)− K̂dj ≤ f(ci)− K̂di, for all i ∈ I

f(cj)− K̂dj ≤ fmin − ϵ|fmin|
(4)

where cj is the center, dj is a measure of the size of the hyperrectangle j (for
instance, the distance from cj to its vertices) and I is IFB/ND+b or IFB/D+F\b.

The value of fmin coincides with fbest if there are center points with θ = 0;
otherwise fmin is set to the least function value of the center points in the region
FB/ND.

On the other hand, for the remaining sets of indices (hyperrectangles) where
θ is used to define the hull, the algorithm identifies POH w.r.t θ, by adopting
the following definition [6,8]:

Definition 3. Given the partition {Hi : i ∈ I} of Ω, let ϵ be a positive constant.
A hyperrectangle j is said to be potentially optimal w.r.t. the function θ if there
exists some constant K̂ > 0 such that

θ(cj)− K̂dj ≤ θ(ci)− K̂di, for all i ∈ I

θ(cj)− K̂dj ≤ θmin − ϵθmin
(5)

where θmin > 0 is the θ value that corresponds to fmin if the “feasible-band”
region is non-empty; otherwise is the least value of θ reached by a point in the
“infeasible” region. The set I is II/ND or II/D.
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3.3 Objective and Violation Upper Bounds

We now show how upper bounds on objective function and constraints violation,
denoted by fU and θU respectively, are imposed in a way that hyperrectangles
with f and/or θ values greater than the corresponding upper bounds are not
considered in the “Selection” step to identify POH. The bounds fU and θU

are defined at each iteration and depend on the information available at that
moment.

Thus, the bound on f to apply to the set IFB/D+F\b is defined by

fU
FB = fFB + βf |fFB | with fFB = max{fFB/ND

max , fbest},

where f
FB/ND
max - directly identified from the filter F - is the f value of the center

of the hyperrectangle with the lowest θ value among the hyperrectangles with
center in the region FB/ND, and βf ≥ 0 is a constant factor.

On the other hand, the bound on f to apply to the set II/D is defined by

fU
I = fI + βf |fI |

where fI - directly identified from the filter - is the f value of the center of the
hyperrectangle with the lowest θ value among the hyperrectangles with center
in the region I/ND. This θ value will be denoted by θmin > θfeas.

Moreover, θU is computed using θmin as follows:

θU = θmin + βθθmin

where βθ > 0 is a constant factor. This upper bound on θ is applied only to the
sets II/ND and II/D, since the other two are naturally bounded by θfeas.

From hereafter, we denote the basic DIRECT-filter method (as described in
the previous subsection) by “DIRECT-f” and the variant that incorporates the
upper bounds on f and θ (as reported here in this subsection) by “UB-DIRECT-
f”.

3.4 Heuristic

Besides using the above described upper bounds, the “UB-DIRECT-f” algorithm
can be enhanced with a heuristic that aims to avoid identifying POH among
those hyperrectangles that were mostly divided [17].

The heuristic is applied only to the two sets of indices IFB/D+F\b and II/D.
Thus, hyperrectangles with indices based on size that are larger than ⌊ib/4⌋ are
discarded, where ⌊t⌋ gives the greatest integer less than or equal to t, and ib is
the index based on the size of the hyperrectangle that corresponds to

– fmin, when the hull from the set IFB/D+F\b is explored;

– θmin, when the hull from the set II/D is explored.
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(We note that the larger the size, the smaller is the index based on size.)
This heuristic runs for a cycle of 10 iterations and aims to potentiate the

exploration of hyperrectangles of larger sizes in order to identify POH. With this
selection, global information during the search is reinforced and the likelihood is
that fmin and/or θmin may be improved. This cycle of iterations is implemented
every 10 iterations of the original “UB-DIRECT-f”. While the heuristic is active,
the upper bounds on f and θ are disabled. This variant is denoted by “UB-
DIRECT-f+Heur” in the subsequent tables of results.

4 Numerical Experiments

During the preliminary numerical experiments, a set of benchmark problems is
used. The MATLAB R⃝ (MATLAB is a registered trademark of the MathWorks,
Inc.) programming language is used to code the algorithm and the tested prob-
lems.

Unless otherwise stated, the stopping conditions for the algorithm are the
following. We consider that a good approximate solution x(k), at iteration k, is
found, if the conditions

θ(x(k)) ≤ η1 and perror ≡
∣∣f(x(k))− f∗

∣∣
max{1, |f∗|}

≤ η2 (6)

are satisfied, for sufficiently small tolerances η1, η2 > 0, where f∗ is the best
known solution to the problem. However, if conditions (6) are not satisfied, the
algorithm runs until a maximum number of function evaluations, nfemax, is
reached.

The parameter values for the algorithm are set as follows: γ = 1E − 05,
θfeas = 1E−04, ϵ = 1E−04, βf = 1.1, βθ = 1E+04, η1 = 1E−04, η2 = 1E−04
and nfemax = 1E + 06. (We note that a smaller value of βf was also tested but
the reported choice gave better results specially for the larger problems.)

Our goal is to reveal the effectiveness of the proposed objective function and
constraint violation upper bounds in reducing the computational burden without
affecting the robustness of the DIRECT-filter method.

Table 1 presents a comparison of our solutions with others reported in the
literature, when solving the problem “Gomez #3” [5], with global optimum value
f∗ = −0.9711, occurring at (0.109,−0.623):

min
x∈Ω

(
4− 2.1x2

1 +
x4
1

3

)
x2
1 + x1x2 + (−4 + 4x2

2)x
2
2

subject to − sin(4πx1) + 2 sin2(2πx2) ≤ 0

with Ω = {x ∈ R2 : −1 ≤ xi ≤ 1, i = 1, 2}. The solutions reported in the table
have 1% and 0.01% error relative to the known global solution. The results are
compared to those available in [5] and to another filter-based DIRECT algorithm
(in [8]). We can see that the implementation of the upper bounds on f and θ as
well as the heuristic make the DIRECT-filter method more efficient.
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Table 1. Comparison results when solving problem “Gomez #3”.

algorithm perror f(x(k)) θ(x(k)) k nfe f∗

“DIRECT-f” 1% -0.961782 0.00E+00 9 185 -0.9711
“UB-DIRECT-f” -0.961782 0.00E+00 9 225

“UB-DIRECT-f+Heur” -0.961782 0.00E+00 10 149
in [8] - - 9 219
in [5] - - - 89

“DIRECT-f” 0.01% -0.971006 6.00E-05 17 615
“UB-DIRECT-f” -0.971006 6.00E-05 17 683

“UB-DIRECT-f+Heur” -0.971041 3.17E-05 18 555
in [8] - - 18 733
in [5] - - - 513

To compare the results to those in [4] (variants DIRECT-GLc and DIRECT-
GLce), problem “T1” (with several instances depending on n) is used:

min
x∈Ω

∑n
i=1 xi

subject to
∑n

i=1 x
2
i ≤ 6

with Ω = {x ∈ Rn : −1 ≤ xi ≤ 1, i = 1, . . . , n}. The algorithms stop with the
condition perror ≤ 1E−04 alone (or a maximum of 1E+06 function evaluations).
See Table 2. Although we are not yet able to achieve convergence before 1E+06
function evaluations on the larger instances, n = 5 and n = 6 of the problem
“T1”, the results obtained by “UB-DIRECT-f+Heur” for the other instances
outperform the others in comparison.

To analyze the quality of the obtained solutions we use problem “5” (available
in [22]):

min
x∈Ω

x3

subject to 30x1 − 6x2
1 − x3 = −250

20x2 − 12x2
2 − x3 = −300

0.5(x1 + x2)
2 − x3 = −150

with Ω = {x ∈ R3 : 0 ≤ x1 ≤ 9.422, 0 ≤ x2 ≤ 5.903, 0 ≤ x3 ≤ 267.42} and
problem “8” [22]:

min
x∈Ω

x4
1 − 14x2

1 + 24x1 − x2
2

subject to x2 − x2
1 − 2x1 ≤ −2

−x1 + x2 ≤ 8

with Ω = {x ∈ R2 : −8 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10} and stop the algorithm
after kmax = 20 iterations and then after kmax = 50 iterations. The results are
compared to those obtained previously in [8], and are shown in Table 3. On the
other hand, to analyze the gain in efficiency of the present algorithm variants,
Table 4 reports the best f and θ values obtained by the algorithms when the
stopping conditions in (6) are used. The gain in quality and efficiency of the



Objective and Violation Upper Bounds on a DIRECT-filter Method 9

Table 2. Comparison results when solving problem “T1”.

algorithm f(x(k)) θ(x(k)) k nfe f∗

n = 2 “DIRECT-f” -3.464106 9.29E-05 14 1395 -3.4641
“UB-DIRECT-f” -3.464106 9.29E-05 14 893

“UB-DIRECT-f+Heur” -3.464106 5.72E-05 13 335
DIRECT-GLc – – – 1373
DIRECT-GLce – – – 2933

n = 3 “DIRECT-f” -4.242443 0.00E+00 28 16885 -4.2426
“UB-DIRECT-f” -4.242443 0.00E+00 35 37977

“UB-DIRECT-f+Heur” -4.242443 9.17E-05 29 3233
DIRECT-GLc – – – 26643
DIRECT-GLce – – – 8297

n = 4 “DIRECT-f” -4.898847 0.00E+00 42 151753 -4.899
“UB-DIRECT-f” -4.898847 3.42E-05 39 78859

“UB-DIRECT-f+Heur” -4.898440 3.30E-05 51 36219
DIRECT-GLc – – – 192951
DIRECT-GLce – – – 47431

n = 5 “DIRECT-f” (-5.470982) (6.65E-05) (61) >1E+06 -5.4772
“UB-DIRECT-f” (-5.470711) (0.00E+00) (63) >1E+06

“UB-DIRECT-f+Heur” (-5.474293) (1.00E-04) (117) >1E+06
DIRECT-GLc – – – 253805
DIRECT-GLce – – – 78257

n = 6 “DIRECT-f” (-5.991770) (0.00E+00) (45) >1E+06 -6.0000
“UB-DIRECT-f” (-5.996647) (0.00E+00) (50) >1E+06

“UB-DIRECT-f+Heur” (-5.988112) (0.00E+00) (79) >1E+06
DIRECT-GLc – – – 239697
DIRECT-GLce – – – 135843

In parentheses, the achieved values when the algorithm stops due to nfe > 1E + 06.

proposed DIRECT-filter method, in particular when the upper bounds on f
and θ, and the heuristic are implemented, have been once more demonstrated
with the problems “5” and “8”. The results reported in [8] and those obtained by
variants DIRECT-GLc and DIRECT-GLce in [4] are also used in the comparison.

Figures 1(a), 1(b) and 1(c) show the center points generated by the three
variants of the DIRECT-filter method when solving the problem “8”. Feasible
points are marked with ‘+’ (blue) and infeasible points with ‘×’ (red). It can be
seen that the variant “UB-DIRECT-f+Heur” is more effective in reaching the
solution. The points cluster around the global solution, being “UB-DIRECT-
f+Heur” the one that concentrates the search the most. Figure 1(d) shows the
pairs (θ, f) corresponding to the center points of all the hyperrectangles gen-
erated by variant “UB-DIRECT-f+Heur”. Dominated points are marked with
‘circle’ (red) and non-dominated points (or filter points) are marked with ‘full
circle’ (blue). The smaller plot shows an overview of the filter points.
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Table 3. Quality of the results when solving problems “5” and “8”.

Prob. algorithm k = kmax

∣∣∣f(x(k))− f∗
∣∣∣ θ(x(k)) nfe f∗

“5” “DIRECT-f” 20 2.512E-04 5.92E-03 471 201.16
“UB-DIRECT-f” 2.512E-04 5.92E-03 471

“UB-DIRECT-f+Heur” 2.512E-04 5.92E-03 379
in [8] 2.512E-04 5.92E-03 (471)

“DIRECT-f” 50 6.819E-04 9.44E-05 3307
“UB-DIRECT-f” 6.819E-04 9.44E-05 2653

“UB-DIRECT-f+Heur” 6.819E-04 9.44E-05 2167
in [8] 6.819E-04 9.55E-05 (2827)

“8” “DIRECT-f” 20 9.756E-04 0.00E+00 881 -118.70
“UB-DIRECT-f” 9.756E-04 0.00E+00 873

“UB-DIRECT-f+Heur” 7.611E-02 5.08E-05 587
in [8] 5.372E-02 0.00E+00 (717)

“DIRECT-f” 50 3.724E-03 9.85E-05 3363
“UB-DIRECT-f” 3.724E-03 9.85E-05 2715

“UB-DIRECT-f+Heur” 2.993E-03 9.82E-05 1971
in [8] 3.623E-03 9.62E-05 (3333)

In parentheses, values computed for the comparison, but not reported in [8].

Table 4. Efficiency when solving problems “5” and “8”.

Prob. algorithm k f(x(k)) θ(x(k)) nfe f∗

“5” “DIRECT-f” 30 201.159343 7.83E-05 1015 201.16
“UB-DIRECT-f” 30 201.159343 7.83E-05 883

“UB-DIRECT-f+Heur” 30 201.159343 7.83E-05 769
in [8] 30 201.159343 7.83E-05 1009

DIRECT-GLc – 201.1593 – 819
DIRECT-GLce – 201.1593 – 819

“8” “DIRECT-f” 19 -118.700976 0.00E+00 823 -118.70
“UB-DIRECT-f” 19 -118.700976 0.00E+00 797

“UB-DIRECT-f+Heur” 23 -118.692210 0.00E+00 689
in [8] 23 -118.700976 0.00E+00 881

DIRECT-GLc – -118.6892 – 1197
DIRECT-GLce – -118.6898 – 1947

5 Conclusions

In this paper, we present an extension of the DIRECT method for solving equal-
ity and inequality constrained global optimization problems. The extension in-
tegrates the filter methodology into the DIRECT and aims to minimize both
the objective function and the constraints violation simultaneously. The use of
the filter method allows the classification of the hyperrectangles, through the
objective and violation values of their center points, in four categories. Features
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(a) “DIRECT-f” center points
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(b) “UB-DIRECT-f” center points
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(c) “UB-DIRECT-f+Heur” center points
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(d) “UB-DIRECT-f+Heur” filter points

Fig. 1. Plots of center points in problem “8”: ‘+’ (blue) - feasible points and ‘×’ (red) -
infeasible points; ‘circle’ (red) - dominated points and ‘full circle’ (blue) - non-dominated
points

like non-dominance/dominance and almost feasible/infeasibility are used to clas-
sify and separately handle the hyperrectangles. Furthermore, upper bounds on
the objective function and on the constraints violation are imposed to identify
the hyperrectangles that should be avoided from the process of selecting the
most promising hyperrectangles. Furthermore, a heuristic that avoids the iden-
tification of potentially optimal hyperrectangles, among those that were mostly
divided, has been cyclically (every 10 iterations) implemented.

Preliminary numerical experiments show that the quality and the efficiency
of the proposed DIRECT-filter method have been improved when the objective
and constraints violation upper bounds are introduced, and in particular, when
the heuristic is activated. The comparison carried out with other DIRECT-type
methods is encouraging for the smaller dimensional problems.
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Future work will be directed to generate upper bounds based on information
gathered from the objective and violation values from each category, resorting
to the average and standard deviation of those values. Issues related to the
extension of the heuristic to avoid exploring hyperrectangles with the larger sizes,
while focusing on hyperrectangles with very small violation and lower objective
values, will require further work.
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