31 research outputs found

    Electron-nuclear Dynamics in Nonlinear Optics and X-ray spectroscopy

    No full text
    This thesis is devoted to theoretical studies of the role of nuclear vibrations on nonlinear and linear absorption, pulse propagation, and resonant scattering of light. The molecular parameters needed for the simulations are obtained through suitable quantum chemical calculations, which are compared with available experimental data. The first part of the thesis addresses to modeling of ampli ed spontaneous emission (ASE) in organic chromophores recently studied in a series of experiments. To explain the threshold behavior of the ASE spectra we invoke the idea of competition between di erent ASE channels and non-radiative quenching of the lasing levels. We show that the ASE spectrum changes drastically when the pump intensity approaches the threshold level, namely, when the ASE rate approaches the rate of vibrational relaxation or the rate of solute-solvent relaxation in the rst excited state. According to our simulations the ASE intensity experiences oscillations. Temporal self-pulsations of forward and backward propagating ASE pulses occur due to two reasons: i) the interaction of co- and counter-propagating ASE, and ii) the competition between the ampli ed spontaneous emission and o -resonant absorption. In the second part of the thesis we explore two-photon absorption taking into account nuclear vibrational degrees of freedom. The theory, applied to the N101 molecule [p-nitro-p'- diphenylamine stilbene], shows that two-step absorption is red shifted relative to one-photon absorption spectrum in agreement with the measurements. The reason for this e ect is the one-photon absorption from the first excited state. Simulations show that two mechanisms are responsible for the population of this state, two-photon absorption and offresonant one-photon absorption by the wing of the spectral line. In the third part of the thesis we study multi-photon dynamics of photobleaching by a periodical sequence of short laser pulses. It is found that the photobleaching as well as the uorescence follow double-exponential dynamics. The fourth part of the thesis is devoted to the role of the nuclear dynamics in x-ray spectroscopy. Our studies show that the vibronic coupling of close lying core excited states strongly a ects the resonant x-ray Raman scattering from ethylene and benzene molecules. We demonstrate that the manifestation of the non-adiabatic e ects depends strongly on the detuning of photon energy from the top of photoabsorption. The electronic selection rules are shown to break down when the excitation energy is tuned in resonance with the symmetry breaking vibrational modes. Selection rules are then restored for large detuning. We obtained good agreement with experiment. Finally, our multi-mode theory is applied to simulations of the resonant Auger and x-ray absorption spectra of the ethyne molecule.QC 2010081

    Electron-nuclear Dynamics in Nonlinear Optics and X-ray spectroscopy

    No full text
    This thesis is devoted to theoretical studies of the role of nuclear vibrations on nonlinear and linear absorption, pulse propagation, and resonant scattering of light. The molecular parameters needed for the simulations are obtained through suitable quantum chemical calculations, which are compared with available experimental data. The first part of the thesis addresses to modeling of ampli ed spontaneous emission (ASE) in organic chromophores recently studied in a series of experiments. To explain the threshold behavior of the ASE spectra we invoke the idea of competition between di erent ASE channels and non-radiative quenching of the lasing levels. We show that the ASE spectrum changes drastically when the pump intensity approaches the threshold level, namely, when the ASE rate approaches the rate of vibrational relaxation or the rate of solute-solvent relaxation in the rst excited state. According to our simulations the ASE intensity experiences oscillations. Temporal self-pulsations of forward and backward propagating ASE pulses occur due to two reasons: i) the interaction of co- and counter-propagating ASE, and ii) the competition between the ampli ed spontaneous emission and o -resonant absorption. In the second part of the thesis we explore two-photon absorption taking into account nuclear vibrational degrees of freedom. The theory, applied to the N101 molecule [p-nitro-p'- diphenylamine stilbene], shows that two-step absorption is red shifted relative to one-photon absorption spectrum in agreement with the measurements. The reason for this e ect is the one-photon absorption from the first excited state. Simulations show that two mechanisms are responsible for the population of this state, two-photon absorption and offresonant one-photon absorption by the wing of the spectral line. In the third part of the thesis we study multi-photon dynamics of photobleaching by a periodical sequence of short laser pulses. It is found that the photobleaching as well as the uorescence follow double-exponential dynamics. The fourth part of the thesis is devoted to the role of the nuclear dynamics in x-ray spectroscopy. Our studies show that the vibronic coupling of close lying core excited states strongly a ects the resonant x-ray Raman scattering from ethylene and benzene molecules. We demonstrate that the manifestation of the non-adiabatic e ects depends strongly on the detuning of photon energy from the top of photoabsorption. The electronic selection rules are shown to break down when the excitation energy is tuned in resonance with the symmetry breaking vibrational modes. Selection rules are then restored for large detuning. We obtained good agreement with experiment. Finally, our multi-mode theory is applied to simulations of the resonant Auger and x-ray absorption spectra of the ethyne molecule.QC 2010081

    Exciton-vibrational coupling in molecular aggregates: Electronic versus vibronic dimer

    No full text
    The influence of exciton-vibrational coupling on the energy level structure, oscillator strength, and relaxation dynamics is investigated for two different excitonic dimer models. As compared with a purely electronic dimer, the inclusion of local vibrational modes within a vibronic dimer gives rise to a complex energy level structure including avoided crossings and changes of the nature of the exciton states from electronic to vibrational character. Besides these static properties, the dissipative dynamics of the two models is systematically investigated using Redfield relaxation theory. In case of the vibronic dimer this allows to treat selected vibrational degrees of freedom beyond the limits of perturbation theory and Markov approximation. It is demonstrated that the vibronic dimer gives rise to transient vibrational population trapping in the one-exciton manifold. (C) 2011 Elsevier B.V. All rights reserved

    Resonant X-ray second harmonic generation in atomic gases

    No full text
    International audienceWe explore the x-ray second-harmonic generation process induced by resonant two-photon absorption in systems with inversion symmetry. We show that this process becomes allowed in the x-ray region due to nondipole contributions. It is found that, although a plane-wave pump field generates only a longitudinal second-harmonic field, a Gaussian pump beam creates also a radially polarized transverse second-harmonic field which is stronger than the longitudinal one. Contrary to the longitudinal component, the transverse second-harmonic field with zero intensity on the axis of the pump beam can run in free space. Our theory is applied to Ar and Ne atomic vapors and predicts an energy conversion efficiency of x-ray second-harmonicgeneration of 3.2 × 10−11 and 1.3 × 10−12, respectively

    Resonant x-ray second-harmonic generation in atomic gases

    No full text
    We explore the x-ray second-harmonic generation process induced by resonant two-photon absorption in systems with inversion symmetry. We show that this process becomes allowed in the x-ray region due to nondipole contributions. It is found that, although a plane-wave pump field generates only a longitudinal second-harmonic field, a Gaussian pump beam creates also a radially polarized transverse second-harmonic field which is stronger than the longitudinal one. Contrary to the longitudinal component, the transverse second-harmonic field with zero intensity on the axis of the pump beam can run in free space. Our theory is applied to Ar and Ne atomic vapors and predicts an energy conversion efficiency of x-ray second-harmonic generation of 3.2×10−11 and 1.3×10−12, respectively

    Nature of the Anomalous Size Dependence of Resonance Red Shifts in Ultrafine Plasmonic Nanoparticles

    No full text
    Plasmonic red shifts of nanoparticles are commonly used in imaging technologies to probe the character of local environments, and the understanding of their dependence on size, shape, and surrounding media has therefore become an important target for research. The red shift of plasmon resonances changes character at about 8-10 nm of size for spherical gold nanoparticles-above this value, the red shift progresses linearly with particle size, while below this size, the red shift changes nonlinearly and more strongly with size. Using an atomistic discrete interaction model, we have studied the special properties of the nanoparticle surface layers and discovered its importance for ultrafine plasmonic nanoparticles and their red shifts. We find that the physical origin for the specific properties inherent to the surface layer of atoms near the nanoparticle boundary is related to the anisotropy of the local environment of atoms in this layer by other atoms. The anisotropy changes the conditions for light-induced nonlocal interactions of neighboring atoms with each other and with the incident radiation compared to the atoms located in the particle core with isotropic nearest surroundings by other atoms. The local anisotropy of the nanoparticle crystal lattice is a geometric factor that increases toward its boundary and that is the most fundamental factor underlying the physical differences between the nanoparticle surface layer and the core material. It is shown that the inflexion point at 8-10 nm is due to a change in the dominant physical origin of the red shift -from chaotization of atomically light-induced dipoles within the surface layer in the case of ultrafine nanoparticles to retardation effects for large nanoparticles in which the relative volume of the surface layer decreases rapidly to a negligible value with increasing nanoparticle size. The patterns revealed are the basis for predicting the manifestation of surface layer effects in ultrafine plasmonic nanoparticles of different and of different materials

    Recoil-induced dissociation in hard-x-ray photoionization

    Get PDF
    We predict the recoil-induced molecular dissociation in hard-x-ray photoionization. The recoil effect is caused by electronic and photon momentum exchange with the molecule. We show the strong role of relativistic effects for the studied molecular fragmentation. The recoil-induced fragmentation of the molecule is caused by elongation of the bond due to the vibrational recoil effect and because of the centrifugal force caused by the rotational recoil. The calculations of the x-ray photoelectron spectra of the H2 and NO molecules show that the predicted effects can be observed in high-energy synchrotrons like SOLEIL, SPring-8, PETRA, and XFEL SACLA. The relativistic effect enhances the recoil momentum transfer and makes it strongly sensitive to the direction of ejection of the fast photoelectron with respect to the photon momentum
    corecore