17 research outputs found

    Self-assembled liquid crystalline nanoparticles as an ophthalmic drug delivery system. Part I: influence of process parameters on their preparation studied by experimental design

    No full text
    International audienceTo develop self-assembled liquid crystalline nanoparticles as a drug delivery system for keratoconus treatment, a formulation containing riboflavin a water-soluble drug, two surfactants (poloxamer 407 and mono acyl glycerol -monoolein-) and water was optimized and prepared by emulsification and a homogenization process. A fractional factorial design was applied to estimate the main effects and interaction effects of five parameters on two responses, namely particle size and encapsulation efficiency. The five parameters are the temperature of the two phases, the duration of emulsification, the presence of heating during homogenization, the number of passes and pressure. The most influent parameters are the presence of heating during the homogenization and the pressure that led to the production of nanoparticles with an average size of 145 nm and an average encapsulation efficiency of 46%

    About the Transient Effects of Synthetic Amorphous Silica: An In Vitro Study on Macrophages

    No full text
    International audienceSilica (either crystalline or amorphous) is widely used for different applications and its toxicological assessment depends on its characteristics and intended use. As sustained inflammation induced by crystalline silica is at the root of silicosis, investigating the inflammatory effects induced by amorphous silicas and their persistence is needed. For the development of new grades of synthetic amorphous silicas, it is also desirable to be able to understand better the factors underlying potential adverse effects. Therefore, we used an optimized in vitro macrophage system to investigate the effects of amorphous silicas, and their persistence. By using different amorphous silicas, we demonstrated that the main driver for the adverse effects is a low size of the overall particle/agglomerate; the second driver being a low size of the primary particle. We also demonstrated that the effects were transient. By using silicon dosage in cells, we showed that the transient effects are coupled with a decrease of intracellular silicon levels over time after exposure. To further investigate this phenomenon, a mild enzymatic cell lysis allowed us to show that amorphous silicas are degraded in macrophages over time, explaining the decrease in silicon content and thus the transiency of the effects of amorphous silicas on macrophages

    Self-assembled liquid crystalline nanoparticles as an ophthalmic drug delivery system. Part II: optimization of formulation variables using experimental design

    No full text
    International audienceIn the field of keratoconus treatment, a lipid-based liquid crystal nanoparticles system has been developed to improve the preocular retention and ocular bioavailability of riboflavin, a water-soluble drug. The formulation of this ophthalmic drug delivery system was optimized by a simplex lattice experimental design. The delivery system is composed of three main components that are mono acyl glycerol (monoolein), poloxamer 407 and water and two secondary components that are riboflavin and glycerol (added to adjust the osmotic pressure). The amounts of these three main components were selected as the factors to systematically optimize the dependent variables that are the encapsulation efficiency and the particle size. In this way, 12 formulas describing experimental domain of interest were prepared. Results obtained using small angle X-rays scattering (SAXS) and cryo-transmission electron microscopy (cryo-TEM) evidenced the presence of nano-objects with either sponge or hexagonal inverted structure. In the zone of interest, the percentage of each component was determined to obtain both high encapsulation efficiency and small size of particles. Two optimized formulations were found: F7 and F1. They are very close in the ternary phase diagram as they contain 6.83% of poloxamer 407; 44.18% and 42.03% of monoolein; 46.29% and 48.44% of water for F7 and F11, respectively. These formulations displayed a good compromise between inputs and outputs investigated

    Repeated Exposure of Macrophages to Synthetic Amorphous Silica Induces Adaptive Proteome Changes and a Moderate Cell Activation

    No full text
    International audienceSynthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNF alpha, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system
    corecore