34 research outputs found

    A CLK3-HMGA2 Alternative Splicing Axis Impacts Human Hematopoietic Stem Cell Molecular Identity throughout Development

    Get PDF
    While gene expression dynamics have been extensively cataloged during hematopoietic differentiation in the adult, less is known about transcriptome diversity of human hematopoietic stem cells (HSCs) during development. To characterize transcriptional and post-transcriptional changes in HSCs during development, we leveraged high-throughput genomic approaches to profile miRNAs, lincRNAs, and mRNAs. Our findings indicate that HSCs manifest distinct alternative splicing patterns in key hematopoietic regulators. Detailed analysis of the splicing dynamics and function of one such regulator, HMGA2, identified an alternative isoform that escapes miRNA-mediated targeting. We further identified the splicing kinase CLK3 that, by regulating HMGA2 splicing, preserves HMGA2 function in the setting of an increase in let-7 miRNA levels, delineating how CLK3 and HMGA2 form a functional axis that influences HSC properties during development. Collectively, our study highlights molecular mechanisms by which alternative splicing and miRNA-mediated post-transcriptional regulation impact the molecular identity and stage-specific developmental features of human HSCs. Human hematopoietic stem cells (HSCs) display substantial transcriptional diversity during development. Here, we investigated the contribution of alternative splicing to such diversity by analyzing the dynamics of a key hematopoietic regulator, HMGA2. Next, we showed that CLK3, by regulating the splicing pattern of HMGA2, reinforces an HSC-specific program

    The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment.

    Get PDF
    Understanding how differentiation programs originate from the gene-expression 'landscape' of hematopoietic stem cells (HSCs) is crucial for the development of new clinical therapies. We mapped the transcriptional dynamics underlying the first steps of commitment by tracking transcriptome changes in human HSCs and eight early progenitor populations. We found that transcriptional programs were extensively shared, extended across lineage-potential boundaries and were not strictly lineage affiliated. Elements of stem, lymphoid and myeloid programs were retained in multilymphoid progenitors (MLPs), which reflected a hybrid transcriptional state. By functional single cell analysis, we found that the transcription factors Bcl-11A, Sox4 and TEAD1 (TEF1) governed transcriptional networks in MLPs, which led to B cell specification. Overall, we found that integrated transcriptome approaches can be used to identify previously unknown regulators of multipotency and show additional complexity in lymphoid commitment

    Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors

    Get PDF
    Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA.National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24-DK092760)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant R24-DK49216)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant U54DK110805)National Heart, Lung, and Blood Institute (Grant UO1-HL100001)National Heart, Lung, and Blood Institute (Grant U01HL134812)National Heart, Lung, and Blood Institute (Grant R01HL04880)National Institutes of Health (U.S.) (Grant R24OD017870-01

    Cellular and Molecular Architecture of the Human Hematopoietic Hierarchy

    No full text
    The blood system is organized as a developmental hierarchy in which rare hematopoietic stem cells (HSCs) generate large numbers of immature progenitors and differentiated mature blood cells. In this process, at least ten distict lineages are specified from multipotent stem cells, however the cellular and molecular organization of the hematopoietic hierarchy is a topic of intense investigation. While much has been learned from mouse models, there is also an appreciation for species-specific differences and the need for human studies. Blood lineages have been traditionally grouped into myeloid and lymphoid branches, and the long-standing dogma has been that the separation between these branches is the earliest event in fate specification. However, recent murine studies indicate that the progeny of initial specification retain the more ancestral myeloid potential. By contrast, much less is known about the progenitor hierarchy in human hematopoiesis. To dissect human hematopoiesis, we developed a novel sorting scheme to isolate human stem and progenitor cells from neonatal cord blood and adult bone marrow. As few as one in five single sorted HSCs efficiently repopulated immunodeficient mice enabling interrogation of homogeneous human stem cells. By analyzing the developmental potential of sorted progenitors at a single-cell level we showed that earliest human lymphoid progenitors (termed LMPs) possess myelo-monocytic potential. In addition to B-, T-, and natural killer cells, LMPs gave rise to dendritic cells and macrophages indicating that these closely related myeloid lineages also remain entangled in lymphoid development. These studies provide systematic insight into the organization of the human hematopoietic hierarchy, which provides the basis for detailed genetic analysis of molecular regulation in defined cell populations. In a pilot study, we investigated the role of a zinc finger transcription factor (ZNF145), PLZF, in myeloid development. We found that PLZF restrained proliferation and differentiation of myeloid progenitors and maintained the progenitor pool. Induction of ERK1/2 by myeloid cytokines, reflective of a stress response, leads to nuclear export and inactivation of PLZF, which augments mature cell production. Thus, negative regulators of differentiation can serve to maintain developmental systems in a primed state, so that their inactivation by extrinsic signals can induce proliferation and differentiation to rapidly satisfy increased demand for mature cells. Taken together, these studies advance our understanding of the cellular and molecular architecture of human hematopoiesis.Ph

    PLZF is a regulator of homeostatic and cytokine-induced myeloid development

    No full text
    A major question in hematopoiesis is how the system maintains long-term homeostasis whereby the generation of large numbers of differentiated cells is balanced with the requirement for maintenance of progenitor pools, while remaining sufficiently flexible to respond to periods of perturbed cellular output during infection or stress. We focused on the development of the myeloid lineage and present evidence that promyelocytic leukemia zinc finger (PLZF) provides a novel function that is critical for both normal and stress-induced myelopoiesis. During homeostasis, PLZF restricts proliferation and differentiation of human cord blood-derived myeloid progenitors to maintain a balance between the progenitor and mature cell compartments. Analysis of PLZF promoter-binding sites revealed that it represses transcription factors involved in normal myeloid differentiation, including GFI-1, C/EBPα, and LEF-1, and induces negative regulators DUSP6 and ID2. Loss of ID2 relieves PLZF-mediated repression of differentiation identifying it as a functional target of PLZF in myelopoiesis. Furthermore, induction of ERK1/2 by myeloid cytokines, reflective of a stress response, leads to nuclear export and inactivation of PLZF, which augments mature cell production. Thus, negative regulators of differentiation can serve to maintain developmental systems in a primed state, so that their inactivation by extrinsic signals can induce proliferation and differentiation to rapidly satisfy increased demand for mature cells
    corecore