110 research outputs found

    Earth’s polar night boundary layer as an analogue for dark side inversions on synchronously rotating terrestrial exoplanets

    Get PDF
    A key factor in determining the potential habitability of synchronously rotating planets is the strength of the atmospheric boundary layer inversion between the dark side surface and the free atmosphere. Here we analyse data obtained from polar night measurements at the South Pole and Alert Canada, which are the closest analogues on Earth to conditions on the dark sides of synchronously rotating exoplanets without and with a maritime influence, respectively. On Earth, such inversions rarely exceed 30 K in strength, because of the effect of turbulent mixing induced by phenomena such as so-called mesoscale slope winds, which have horizontal scales of 10s to 100s of km, suggesting a similar constraint to near-surface dark side inversions. We discuss the sensitivity of inversion strength to factors such as orography and the global-scale circulation, and compare them to a simulation of the planet Proxima Centauri b. Our results demonstrate the importance of comparisons with Earth data in exoplanet research, and highlight the need for further studies of the exoplanet atmospheric collapse problem using mesoscale and eddy-resolving models

    Characteristics of polar lows in the Nordic Seas and the impact of orography and sea ice on their development

    Get PDF
    Polar lows in the Nordic Seas have been examined through a case study based on unique observations gathered during a field campaign, numerical simulations, sensitivity experiments with altered orography and sea ice cover, and a climatology based on objective tracking and two reanalysis products. A detailed analysis of a shear-line polar low has been presented using comprehensive observations from a research aircraft, dropsondes, the ASCAT scatterometer, and the CloudSat radar; in conjunction with convection-permitting simulations performed with the Met Office Unified Model. High winds to the north and west were within the cold-air mass and associated with large surface turbulent heat fluxes and convective clouds. This suggested that barotropic instability manifested by mesoscale waves coalescing into polar low’s centre, and diabatic processes, were important for its intensification. The model generally captured the polar low structure well — in particular the thermodynamic fields and the strength of the horizontal shear. The spatial structure of the convective cloud bands was simulated reasonably well, but the model significantly underestimated the liquid water content and height of the cloud layers compared to observations. Through sensitivity simulations of two typical Nordic Sea polar lows, it was found that Svalbard blocked Arctic air masses, and acted as an additional source of cyclonic vorticity aiding polar low development. A decrease in sea ice near Svalbard resulted in a moderate intensification of the polar lows, while an increase in sea ice significantly hindered their growth. These environmental changes modified the polar lows’ tracks and development, but did not eradicate them. A new climatology has been compiled from nine extended winters using two reanalyses: ERA5 and ERA-Interim. Mesoscale cyclones were tracked by an objective vorticity-based method. Compared to ERA-Interim, ERA5 reproduces the spatial distribution of cyclone density more like those from satellite-based studies, as it is able to resolve the wind field gradients with higher fidelity. An increase of polar lows near Scandinavia was found and there is tentative evidence that this is a result of sea ice loss in the northern Nordic Seas

    Traveling planetary-scale waves cause cloud variability on tidally locked aquaplanets

    Get PDF
    Cloud cover at the planetary limb of water-rich Earth-like planets is likely to weaken chemical signatures in transmission spectra, impeding attempts to characterize these atmospheres. However, based on observations of Earth and solar system worlds, exoplanets with atmospheres should have both short-term weather and long-term climate variability, implying that cloud cover may be less during some observing periods. We identify and describe a mechanism driving periodic clear sky events at the terminators in simulations of tidally locked Earth-like planets. A feedback between dayside cloud radiative effects, incoming stellar radiation and heating, and the dynamical state of the atmosphere, especially the zonal wavenumber-1 Rossby wave identified in past work on tidally locked planets, leads to oscillations in Rossby wave phase speeds and in the position of Rossby gyres and results in advection of clouds to or away from the planet's eastern terminator. We study this oscillation in simulations of Proxima Centauri b, TRAPPIST 1-e, and rapidly rotating versions of these worlds located at the extreme inner edge of their stars' habitable zones. We simulate time series of the transit depths of the 1.4 {\mu}m water feature and 2.7 {\mu}m carbon dioxide feature. The impact of atmospheric variability on the transmission spectra is sensitive to the structure of the dayside cloud cover and the location of the Rossby gyres, but none of our simulations have variability significant enough to be detectable with current methods.Comment: 21 pages, 11 figure

    Characteristics of cold-air outbreak events and associated polar mesoscale cyclogenesis over the north Atlantic region

    Get PDF
    Equatorward excursions of cold polar air masses into ice-free regions, so-called cold-air outbreak (CAO) events, are frequently accompanied by the development of severe mesoscale weather features. Focusing on two key regions, the Labrador Sea and the Greenland–Norwegian Seas, we apply objective detection for both CAO events and polar mesoscale cyclones to outline the temporal evolution of CAO events and quantify associated mesoscale cyclogenesis. We introduce a novel metric, the CAO depth, which incorporates both the static stability and the temperature of the air mass. The large-scale atmospheric conditions during the onset of CAO events comprise a very cold upper-level trough over the CAO region and a surface cyclone downstream. As the CAO matures, the cold air mass extends southeastward, accompanied by lower static stability and enhanced surface fluxes. Despite the nearly 20° difference in latitude, CAO events over both regions exhibit similar evolution and characteristics including surface fluxes and thermodynamic structure. About two-thirds of the identified CAO events are accompanied by polar mesoscale cyclogenesis, with the majority of mesoscale cyclones originating inside the cold air masses. Neither the duration nor the maturity of the CAO event seems relevant for mesoscale cyclogenesis. Mesoscale cyclogenesis conditions during CAO events over the Labrador Sea are warmer, moister and exhibit stronger surface latent heat fluxes than their Norwegian Sea counterparts

    Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere

    Full text link
    We demonstrate that LFRic-Atmosphere, a model built using the Met Office's GungHo dynamical core, is able to reproduce idealised large-scale atmospheric circulation patterns specified by several widely-used benchmark recipes. This is motivated by the rapid rate of exoplanet discovery and the ever-growing need for numerical modelling and characterisation of their atmospheres. Here we present LFRic-Atmosphere's results for the idealised tests imitating circulation regimes commonly used in the exoplanet modelling community. The benchmarks include three analytic forcing cases: the standard Held-Suarez test, the Menou-Rauscher Earth-like test, and the Merlis-Schneider Tidally Locked Earth test. Qualitatively, LFRic-Atmosphere agrees well with other numerical models and shows excellent conservation properties in terms of total mass, angular momentum and kinetic energy. We then use LFRic-Atmosphere with a more realistic representation of physical processes (radiation, subgrid-scale mixing, convection, clouds) by configuring it for the four TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) scenarios. This is the first application of LFRic-Atmosphere to a possible climate of a confirmed terrestrial exoplanet. LFRic-Atmosphere reproduces the THAI scenarios within the spread of the existing models across a range of key climatic variables. Our work shows that LFRic-Atmosphere performs well in the seven benchmark tests for terrestrial atmospheres, justifying its use in future exoplanet climate studies.Comment: 34 pages, 9(12) figures; Submitted to Geoscientific Model Development; Comments are welcome (see Discussion tab on the journal's website: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-647

    An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: the impact of sea ice distribution

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Renfrew, I. A., Barrell, C., Elvidge, A. D., Brooke, J. K., Duscha, C., King, J. C., Kristiansen, J., Cope, T. L., Moore, G. W. K., Pickart, R. S., Reuder, J., Sandu, I., Sergeev, D., Terpstra, A., Vage, K., & Weiss, A. An evaluation of surface meteorology and fluxes over the Iceland and Greenland Seas in ERA5 reanalysis: the impact of sea ice distribution. Quarterly Journal of the Royal Meteorological Society, (2020): 1-22, doi:10.1002/qj.3941.The Iceland and Greenland Seas are a crucial region for the climate system, being the headwaters of the lower limb of the Atlantic Meridional Overturning Circulation. Investigating the atmosphere–ocean–ice processes in this region often necessitates the use of meteorological reanalyses—a representation of the atmospheric state based on the assimilation of observations into a numerical weather prediction system. Knowing the quality of reanalysis products is vital for their proper use. Here we evaluate the surface‐layer meteorology and surface turbulent fluxes in winter and spring for the latest reanalysis from the European Centre for Medium‐Range Weather Forecasts, i.e., ERA5. In situ observations from a meteorological buoy, a research vessel, and a research aircraft during the Iceland–Greenland Seas Project provide unparalleled coverage of this climatically important region. The observations are independent of ERA5. They allow a comprehensive evaluation of the surface meteorology and fluxes of these subpolar seas and, for the first time, a specific focus on the marginal ice zone. Over the ice‐free ocean, ERA5 generally compares well to the observations of surface‐layer meteorology and turbulent fluxes. However, over the marginal ice zone, the correspondence is noticeably less accurate: for example, the root‐mean‐square errors are significantly higher for surface temperature, wind speed, and surface sensible heat flux. The primary reason for the difference in reanalysis quality is an overly smooth sea‐ice distribution in the surface boundary conditions used in ERA5. Particularly over the marginal ice zone, unrepresented variability and uncertainties in how to parameterize surface exchange compromise the quality of the reanalyses. A parallel evaluation of higher‐resolution forecast fields from the Met Office's Unified Model corroborates these findings.This study was part of the Iceland Greenland Seas Project. Funding was from the NERC AFIS grant (NE/N009754/1), the ALERTNESS (Advanced models and weather prediction in the Arctic: enhanced capacity from observations and polar process representations) project (Research Council of Norway project number 280573), the Trond Mohn Foundation (BFS2016REK01), and the National Science Foundation grant OCE‐1558742. The Leosphere WindCube v2 and the Wavescan buoy are part of the OBLO (Offshore Boundary Layer Observatory) infrastructure funded by the Research Council of Norway (project number 227777)

    CAMEMBERT: A Mini-Neptunes GCM Intercomparison, Protocol Version 1.0. A CUISINES Model Intercomparison Project

    Full text link
    With an increased focus on the observing and modelling of mini-Neptunes, there comes a need to better understand the tools we use to model their atmospheres. In this paper, we present the protocol for the CAMEMBERT (Comparing Atmospheric Models of Extrasolar Mini-neptunes Building and Envisioning Retrievals and Transits) project, an intercomparison of general circulation models (GCMs) used by the exoplanetary science community to simulate the atmospheres of mini-Neptunes. We focus on two targets well studied both observationally and theoretically with planned JWST Cycle 1 observations: the warm GJ~1214b and the cooler K2-18b. For each target, we consider a temperature-forced case, a clear sky dual-grey radiative transfer case, and a clear sky multi band radiative transfer case, covering a range of complexities and configurations where we know differences exist between GCMs in the literature. This paper presents all the details necessary to participate in the intercomparison, with the intention of presenting the results in future papers. Currently, there are eight GCMs participating (ExoCAM, Exo-FMS, FMS PCM, Generic PCM, MITgcm, RM-GCM, THOR, and the UM), and membership in the project remains open. Those interested in participating are invited to contact the authors.Comment: Accepted to PS

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    CMS physics technical design report : Addendum on high density QCD with heavy ions

    Get PDF
    Peer reviewe
    corecore