61 research outputs found

    Transient Increase in Cyclic AMP Localized to Macrophage Phagosomes

    Get PDF
    Cyclic AMP (cAMP) regulates many biological processes and cellular functions. The importance of spatially localized intracellular gradients of cAMP is increasingly appreciated. Previous work in macrophages has shown that cAMP is produced during phagocytosis and that elevated cAMP levels suppress host defense functions, including generation of proinflammatory mediators, phagocytosis and killing. However, the spatial and kinetic characteristics of cAMP generation in phagocytosing macrophages have yet to be examined. Using a FΓΆrster resonance energy transfer (FRET)-based cAMP biosensor, we measured the generation of cAMP in live macrophages. We detected no difference in bulk intracellular cAMP levels between resting cells and cells actively phagocytosing IgG-opsonized particles. However, analysis with the biosensor revealed a rapid decrease in FRET signal corresponding to a transient burst of cAMP production localized to the forming phagosome. cAMP levels returned to baseline after the particle was internalized. These studies indicate that localized increases in cAMP accompany phagosome formation and provide a framework for a more complete understanding of how cAMP regulates macrophage host defense functions

    Uptake of oxLDL and IL-10 production by macrophages requires PAFR and CD36 recruitment into the same lipid rafts

    Get PDF
    Macrophage interaction with oxidized low-density lipoprotein (oxLDL) leads to its differentiation into foam cells and cytokine production, contributing to atherosclerosis development. In a previous study, we showed that CD36 and the receptor for platelet-activating factor (PAFR) are required for oxLDL to activate gene transcription for cytokines and CD36. Here, we investigated the localization and physical interaction of CD36 and PAFR in macrophages stimulated with oxLDL. We found that blocking CD36 or PAFR decreases oxLDL uptake and IL-10 production. OxLDL induces IL-10 mRNA expression only in HEK293T expressing both receptors (PAFR and CD36). OxLDL does not induce IL-12 production. The lipid rafts disruption by treatment with Ξ²CD reduces the oxLDL uptake and IL-10 production. OxLDL induces co-immunoprecipitation of PAFR and CD36 with the constitutive raft protein flotillin-1, and colocalization with the lipid raft-marker GM1-ganglioside. Finally, we found colocalization of PAFR and CD36 in macrophages from human atherosclerotic plaques. Our results show that oxLDL induces the recruitment of PAFR and CD36 into the same lipid rafts, which is important for oxLDL uptake and IL-10 production. This study provided new insights into how oxLDL interact with macrophages and contributing to atherosclerosis development

    Impaired neonatal macrophage phagocytosis is not explained by overproduction of prostaglandin E2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neonates and young infants manifest increased susceptibility to bacterial, viral and fungal lung infections. Previous work has identified a role for eicosanoids in mediating host defense functions of macrophages. This study examines the relationship between alveolar macrophage (AM) host defense and production of lipid mediators during the neonatal period compared to adult AMs.</p> <p>Methods</p> <p>AMs were harvested from young (day 7 and day 14) and adult (~10 week) rats. The functionality of these cells was assessed by examining their ability to phagocytose opsonized targets, produce cytokines, eicosanoids and intracellular cAMP measured by enzyme immunoassays, and gene expression of proteins, enzymes and receptors essential for eicosanoid generation and phagocytosis measured by real time RT-PCR.</p> <p>Results</p> <p>AMs from young animals (day 7 and 14) were defective in their ability to phagocytose opsonized targets and produce tumor necrosis factor (TNF)- Ξ±. In addition, young AMs produce more prostaglandin (PG) E<sub>2</sub>, a suppressor of host defense, and less leukotriene (LT) B<sub>4</sub>, a promoter of host defense. Young AMs express higher levels of enzymes responsible for the production of PGE<sub>2 </sub>and LTB<sub>4</sub>; however, there was no change in the expression of E prostanoid (EP) receptors or LT receptors. Despite the similar EP profiles, young AMs are more responsive to PGE<sub>2 </sub>as evidenced by their increased production of the important second messenger, cyclic AMP. In addition, young AMs express higher levels of PDE3B and lower levels of PDE4C compared to adult AMs. However, even though the young AMs produced a skewed eicosanoid profile, neither the inhibition of PGE<sub>2 </sub>by aspirin nor the addition of exogenous LTB<sub>4 </sub>rescued the defective opsonized phagocytosis. Examination of a receptor responsible for mediating opsonized phagocytosis showed a significant decrease in the gene expression levels of the Fcgamma receptor in young (day 7) AMs compared to adult AMs.</p> <p>Conclusion</p> <p>These results suggest that elevated production of PGE<sub>2 </sub>and decreased production of LTB<sub>4 </sub>do not contribute to impaired opsonized macrophage phagocytosis and highlight an important difference between young and adult AMs.</p

    Successful Shortening of Tuberculosis Treatment Using Adjuvant Host-Directed Therapy with FDA-Approved Phosphodiesterase Inhibitors in the Mouse Model

    Get PDF
    Global control of tuberculosis (TB), an infectious disease that claims nearly 2 million lives annually, is hindered by the long duration of chemotherapy required for curative treatment. Lack of adherence to this intense treatment regimen leads to poor patient outcomes, development of new or additional drug resistance, and continued spread of M.tb. within communities. Hence, shortening the duration of TB therapy could increase drug adherence and cure in TB patients. Here, we report that addition of the United Stated Food and Drug Administration-approved phosphodiesterase inhibitors (PDE-Is) cilostazol and sildenafil to the standard TB treatment regimen reduces tissue pathology, leads to faster bacterial clearance and shortens the time to lung sterilization by one month, compared to standard treatment alone, in a murine model of TB. Our data suggest that these PDE-Is could be repurposed for use as adjunctive drugs to shorten TB treatment in humans

    Neutrophils Reduce the Parasite Burden in Leishmania (Leishmania) amazonensis-Infected Macrophages

    Get PDF
    Background: Studies on the role of neutrophils in Leishmania infection were mainly performed with L. (L) major, whereas less information is available for L. (L) amazonensis. Previous results from our laboratory showed a large infiltrate of neutrophils in the site of infection in a mouse strain resistant to L. (L.) amazonensis (C3H/HePas). in contrast, the susceptible strain (BALB/c) displayed a predominance of macrophages harboring a high number of amastigotes and very few neutrophils. These findings led us to investigate the interaction of inflammatory neutrophils with L. (L.) amazonensis-infected macrophages in vitro.Methodology/Principal Findings: Mouse peritoneal macrophages infected with L. (L.) amazonensis were co-cultured with inflammatory neutrophils, and after four days, the infection was quantified microscopically. Data are representative of three experiments with similar results. the main findings were 1) intracellular parasites were efficiently destroyed in the co-cultures; 2) the leishmanicidal effect was similar when cells were obtained from mouse strains resistant (C3H/HePas) or susceptible (BALB/c) to L. (L.) amazonensis; 3) parasite destruction did not require contact between infected macrophages and neutrophils; 4) tumor necrosis factor alpha (TNF-alpha), neutrophil elastase and platelet activating factor (PAF) were involved with the leishmanicidal activity, and 5) destruction of the parasites did not depend on generation of oxygen or nitrogen radicals, indicating that parasite clearance did not involve the classical pathway of macrophage activation by TNF-alpha, as reported for other Leishmania species.Conclusions/Significance: the present results provide evidence that neutrophils in concert with macrophages play a previously unrecognized leishmanicidal effect on L. (L.) amazonensis. We believe these findings may help to understand the mechanisms involved in innate immunity in cutaneous infection by this Leishmania species.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilWeb of Scienc

    Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP

    Get PDF
    AIMS/HYPOTHESIS: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As monocytes may contribute to the excessive inflammatory responses in such wounds, this study focussed on the effects of maggot secretions on the pro-inflammatory activities of these cells. METHODS: Freshly isolated monocytes were incubated with a range of secretions for 1 h and then stimulated with lipopolysaccharides (range 0-100 ng/ml) or lipoteichoic acid (range 0-5 microg/ml) for 18 h. The expression of cell surface molecules, cytokine and chemokine levels in culture supernatants, cell viability, chemotaxis, and phagocytosis and killing of Staphylococcus aureus were measured. RESULTS: Maggot secretions dose-dependently inhibited production of the pro-inflammatory cytokines TNF-alpha, IL-12p40 and macrophage migration inhibitory factor by lipopolysaccharides- and lipoteichoic acid-stimulated monocytes, while enhancing production of the anti-inflammatory cytokine IL-10. Expression of cell surface receptors involved in pathogen recognition remained unaffected by secretions. In addition, maggot secretions altered the chemokine profile of monocytes by downregulating macrophage inflammatory protein-1beta and upregulating monocyte chemoattractant protein-1 and IL-8. Nevertheless, chemotactic responses of monocytes were inhibited by secretions. Furthermore, maggot secretions did not affect phagocytosis and intracellular killing of S. aureus by human monocytes. Finally, secretions induced a transient rise in the intracellular cyclic AMP concentration in monocytes and Rp-cyclic AMPS inhibited the effects of secretions. CONCLUSIONS/INTERPRETATION: Maggot secretions inhibit the pro-inflammatory responses of human monocytes through a cyclic AMP-dependent mechanism. Regulation of the inflammatory processes by maggots contributes to their beneficial effects on chronic wound

    Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs

    Get PDF
    Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-Ξ±) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment
    • …
    corecore