62 research outputs found

    A pragmatic approach to the problem of the self-adjoint extension of Hamilton operators with the Aharonov-Bohm potential

    Get PDF
    We consider the problem of self-adjoint extension of Hamilton operators for charged quantum particles in the pure Aharonov-Bohm potential (infinitely thin solenoid). We present a pragmatic approach to the problem based on the orthogonalization of the radial solutions for different quantum numbers. Then we discuss a model of a scalar particle with a magnetic moment which allows to explain why the self-adjoint extension contains arbitrary parameters and give a physical interpretation.Comment: 8 pages, LaTeX, to appear in J. Phys.

    Vacuum Polarization of a Charged Massless Scalar Field on Cosmic String Spacetime in the Presence of a Magnetic Field

    Get PDF
    In this paper we consider a charged massless scalar quantum field operator in the spacetime of an idealized cosmic string, i.e., an infinitely long, straight and static cosmic string, which presents a magnetic field confined in a cylindrical tube of finite radius. Three distinct situations are taking into account in this analysis: {\it{i)}} a homogeneous field inside the tube, {\it{ii)}} a magnetic field proportional to 1/r1/r and {\it{iii)}} a cylindrical shell with δ\delta-function. In these three cases the axis of the infinitely long tube of radius RR coincides with the cosmic string. In order to study the vacuum polarization effects outside the tube, we explicitly calculate the Euclidean Green function associated with this system for the three above situations, considering points in the region outside the tube.Comment: 26 pages, LaTex format, 3 figure

    Semiclassical gravitational effects near a singular magnetic flux

    Get PDF
    We consider the backreaction of the vacuum polarization effect for a massive charged scalar field in the presence of a singular magnetic massless string on the background metric. Using semiclassical approach, we find the first-order (in \hbar units) metric modifications and the corresponding gravitational potential and deficit angle. It is shown that, in certain region of values of coupling constant and magnetic flux, the gravitational potential and deficit angle can be positive as well as negative over all distances from the string and can even change its sign. Unlike the case of massless scalar field, the gravitational corrections were found to have short-range behavior.Comment: 14 pages, 4 figures, journal versio

    Fractionalization of angular momentum at finite temperature around a magnetic vortex

    Get PDF
    Ambiguities in the definition of angular momentum of a quantum-mechanical particle in the presence of a magnetic vortex are reviewed. We show that the long-standing problem of the adequate definition is resolved in the framework of the second-quantized theory at nonzero temperature. Planar relativistic Fermi gas in the background of a point-like magnetic vortex with arbitrary flux is considered, and we find thermal averages, quadratic fluctuations, and correlations of all observables, including angular momentum, in this system. The kinetic definition of angular momentum is picked out unambiguously by the requirement of plausible behaviour for the angular momentum fluctuation and its correlation with fermion number.Comment: 32 pages, submitted to Annals of Physic

    Induced quantum numbers of a magnetic vortex at nonzero temperature

    Full text link
    The phenomenon of the finite-temperature induced quantum numbers in fermionic systems with topological defects is analyzed. We consider an ideal gas of twodimensional relativistic massive electrons in the background of a defect in the form of a pointlike magnetic vortex with arbitrary flux. This system is found to acquire, in addition to fermion number, also orbital angular momentum, spin, and induced magnetic flux, and we determine the functional dependence of the appropriate thermal averages and correlations on the temperature, the vortex flux, and the continuous parameter of the boundary condition at the location of the defect. We find that nonnegativeness of thermal quadratic fluctuations imposes a restriction on the admissible range of values of the boundary parameter. The long-standing problem of the adequate definition of total angular momentum for the system considered is resolved.Comment: 40 pages, 7 figures, journal version, minor correction

    Perturbative Study of Bremsstrahlung and Pair-Production by Spin-1/2 Particles in the Aharonov-Bohm Potential

    Full text link
    In the presence of an external Aharonov-Bohm potential, we investigate the two QED processes of the emission of a bremsstrahlung photon by an electron, and the production of an electron-positron pair by a single photon. Calculations are carried out using the Born approximation within the framework of covariant perturbation theory to lowest non-vanishing order in \alpha. The matrix element for each process is derived, and the corresponding differential cross-section is calculated. In the non-relativistic limit, the resulting angular and spectral distributions and some polarization properties are considered, and compared to results of previous works.Comment: 15 pages, RevTex 4, 2 figures, submitted for publicatio

    Fluctuations in the current and energy densities around a magnetic flux carrying cosmic string

    Get PDF
    We calculate the fluctuations in the current and energy densities for the case of a quantized, minimally coupled, massless, complex scalar field around a straight and infinitesimally thin cosmic string carrying magnetic flux. At zero temperature, we evaluate the fluctuations in the current and energy densities for arbitrary flux and deficit angle. At a finite temperature, we evaluate the fluctuations in the energy density for the special case wherein the flux is absent and the deficit angle equals π\pi. We find that, quite generically, the dimensionless ratio of the variance to the mean-squared values of the current and energy densities are of order unity which suggests that the fluctuations around cosmic strings can be considered to be large.Comment: RevTeX, 13 Pages, 3 Figure

    Radiative Corrections to the Aharonov-Bohm Scattering

    Full text link
    We consider the scattering of relativistic electrons from a thin magnetic flux tube and perturbatively calculate the order α\alpha, radiative correction, to the first order Born approximation. We show also that the second order Born amplitude vanishes, and obtain a finite inclusive cross section for the one-body scattering which incorporates soft photon bremsstrahlung effects. Moreover, we determine the radiatively corrected Aharonov-Bohm potential and, in particular, verify that an induced magnetic field is generated outside of the flux tube.Comment: 14 pages, revtex, 3 figure

    Polyhedral Cosmic Strings

    Full text link
    Quantum field theory is discussed in M\"obius corner kaleidoscopes using the method of images. The vacuum average of the stress-energy tensor of a free field is derived and is shown to be a simple sum of straight cosmic string expressions, the strings running along the edges of the corners. It does not seem possible to set up a spin-half theory easily.Comment: 15 pages, 4 text figures not include

    ДВУМЕРНАЯ МОДЕЛЬ ДЛЯ ОБОСНОВАНИЯ БЕЗОПАСНОСТИ ПУНКТОВ ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ

    Get PDF
    Single-dimensional models of contaminants migration in soil do not always adequately reflect the processes that occur in real life. Transition to two- or three- dimensional modeling would help enormously improving accuracy of calculations.Одномерные модели переноса загрязнения в грунте не всегда адекватно отражают реально происходящие процессы. Переход к двумерной или трехмерной моделям позволяет многократно повысить точность расчетов
    corecore