Abstract

Ambiguities in the definition of angular momentum of a quantum-mechanical particle in the presence of a magnetic vortex are reviewed. We show that the long-standing problem of the adequate definition is resolved in the framework of the second-quantized theory at nonzero temperature. Planar relativistic Fermi gas in the background of a point-like magnetic vortex with arbitrary flux is considered, and we find thermal averages, quadratic fluctuations, and correlations of all observables, including angular momentum, in this system. The kinetic definition of angular momentum is picked out unambiguously by the requirement of plausible behaviour for the angular momentum fluctuation and its correlation with fermion number.Comment: 32 pages, submitted to Annals of Physic

    Similar works

    Available Versions

    Last time updated on 11/12/2019