13 research outputs found

    A standardisation framework for bio‐logging data to advance ecological research and conservation

    Get PDF
    Bio‐logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio‐logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio‐logging data into research and management recommendations. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy‐of‐use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter‐governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio‐logging data formats across all fields in animal ecology

    Animal-borne telemetry: An integral component of the ocean observing toolkit

    Get PDF
    Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management

    Bioenergetic growth model for the yellowtail kingfish (Seriola lalandi)

    No full text
    The culture of Seriola species is well established in Japan and is an emerging industry in many other temperate regions around the world. Despite many studies on the growth, physiology and nutritional requirements of yellowtail kingfish, the complex interactions between nutrition and environmental impacts are still being investigated. Here, we present a theoretical bioenergetic model for yellowtail kingfish bringing together the current knowledge of this species growth, metabolism and other aspects of its physiology. We solve the energy budget of yellowtail kingfish using existing theoretical equations to represent all energy gains and all metabolic costs and parameterising them with published data obtained when rearing yellowtail kingfish. Our model predicts growth as a function of suitable temperatures for yellowtail kingfish (18–27 °C) and estimates the rate of feed ingestion as well as the effect of diet on feed conversion ratio (FCR). Our model can be used to estimate energy and protein retention, nutrients loads into the ecosystem, and how these outputs change through diet manipulation at specified weight classes. We demonstrate how to use our model to predict improvements to FCR and include a simulation example showing results from shifting from a high protein-low fat diet for juveniles (0 to 500 g) to a low protein-high fat diet for adult fish (500–1000 g). Excretion of dissolved nitrogen and the consumption of oxygen through fish respiration are highest at the optimum temperature for growth. When fed a diet of 45% protein and 20% fat, our simulation shows that a constant biomass of 1000 kg of fish at a constant optimum temperature of 22.8 °C, excretes 153.1 kg of nitrogen year -1. For the same diet composition and temperature, oxygen consumption decreases from 19.9 to 10.2 kg day−1 for 1000 kg of fish weighing 50 g and 1.5 kg, respectively. Our model is useful to investigate complex interactions of metabolism for the culture of yellowtail kingfish in a commercial setting and allows predictions for changes that could improve production

    Transferability of predictive models of coral reef fish species richness

    No full text
    1. Understanding biodiversity patterns depends on data collection, which in marine environments can be prohibitively expensive. Transferable predictive models could therefore provide time- and cost-effective tools for understanding biodiversity–environment relationships. 2. We used fish species counts and spatial and environmental predictors to develop predictive models of fish species richness (S) for two major coral reefs located in separate ocean basins: Australia’s Great Barrier Reef (GBR; Queensland) and Ningaloo Reef (NR; Western Australia). We tested the ability of the GBR model to predict S at NR (its transferability) under various scenarios using different sampling durations, years sampled and transect sizes. 3. Based on RÂČ, the GBR model poorly predicted S at NR (RÂČ < 16%) with few predicted values strongly correlated with observations. However, comparable spatial patterns in S across NR were predicted by both the NR and the GBR models when calibrated at similar spatio-temporal scales. 4. This result suggests that poor validation of the transferred models may indicate low deviance explained by the predictors in the new system (where other predictors not included might have a more direct effect on the response) and that in some situations, model transferability may be considerably improved by using data sets of similar spatio-temporal scales. Therefore, data filtering by time and space may be required prior to transferring models. 5. Policy implications. Transferable models can provide initial estimates of fish species richness patterns in poorly sampled systems, and thereby guide the design of better and more efficient sampling programs. Further improvements in model transferability will increase their predictive power and utility in conservation planning and management.Ana M.M. Sequeira, Camille Mellin, Hector M. Lozano-Montes, Mathew A. Vanderklift, Russ C. Babcock, Michael D.E. Haywood, Jessica J. Meeuwig, and M. Julian Cale

    Challenges of transferring models of fish abundance between coral reefs

    No full text
    Reliable abundance estimates for species are fundamental in ecology, fisheries, and conservation. Consequently, predictive models able to provide reliable estimates for un- or poorly-surveyed locations would prove a valuable tool for management. Based on commonly used environmental and physical predictors, we developed predictive models of total fish abundance and of abundance by fish family for ten representative taxonomic families for the Great Barrier Reef (GBR) using multiple temporal scenarios. We then tested if models developed for the GBR (reference system) could predict fish abundances at Ningaloo Reef (NR; target system), i.e., if these GBR models could be successfully transferred to NR. Models of abundance by fish family resulted in improved performance (e.g., 44.1%  0.05). High spatio-temporal variability of patterns in fish abundance at the family and population levels in both reef systems likely affected the transferability of these models. Inclusion of additional predictors with potential direct effects on abundance, such as local fishing effort or topographic complexity, may improve transferability of fish abundance models. However, observations of these local-scale predictors are often not available, and might thereby hinder studies on model transferability and its usefulness for conservation planning and management.Ana M.M. Sequeira, Camille Mellin, Hector M. Lozano-Montes, Jessica J. Meeuwig, Mathew A. Vanderklift, Michael D.E. Haywood 
 et al

    Global spatial risk assessment of sharks under the footprint of fisheries.

    No full text
    Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management

    Global spatial risk assessment of sharks under the footprint of fisheries

    Full text link
    Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.Nuno Queiroz, Nicolas E. Humphries, Ana Couto, Marisa Vedor ... Simon D. Goldsworthy ... Paul J. Rogers ... et al

    A standardisation framework for bio-logging data to advance ecological research and conservation

    Get PDF
    Funding: AMMS was funded by a 2020 Pew Fellowship in Marine Conservation, ARC DE170100841, and also supported by AIMS. CR was the recipient of a Radcliffe Fellowship at the Radcliffe Institute for Advanced Study, Harvard University.Bio-logging data obtained by tagging animals is key to addressing global conservation challenges. However, the many thousands of existing bio-logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms. This slows down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability, and effective translation of bio-logging data into research and management recommendations. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable, and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (i) decoded raw data, (ii) curated data, (iii) interpolated data, and (iv) gridded data. Our framework allows for integration of simple tabular arrays (e.g., csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy-of-use, rightful attribution (ensuring data providers keep ownership through the entire process), and data preservation security. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, providing data examples, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter-governmental assessments (e.g., the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio-logging data formats across all fields in animal ecology.Publisher PDFPeer reviewe

    A standardisation framework for bio-logging data to advance ecological research and conservation

    No full text
    [eng] Bio-logging data obtained by tagging animals are key to addressing global conservation challenges. However, the many thousands of existing bio-logging datasets are not easily discoverable, universally comparable, nor readily accessible through existing repositories and across platforms, slowing down ecological research and effective management. A set of universal standards is needed to ensure discoverability, interoperability and effective translation of bio-logging data into research and management recommendations. We propose a standardisation framework adhering to existing data principles (FAIR: Findable, Accessible, Interoperable and Reusable; and TRUST: Transparency, Responsibility, User focus, Sustainability and Technology) and involving the use of simple templates to create a data flow from manufacturers and researchers to compliant repositories, where automated procedures should be in place to prepare data availability into four standardised levels: (a) decoded raw data, (b) curated data, (c) interpolated data and (d) gridded data. Our framework allows for integration of simple tabular arrays (e.g. csv files) and creation of sharable and interoperable network Common Data Form (netCDF) files containing all the needed information for accuracy-of-use, rightful attribution (ensuring data providers keep ownership through the entire process) and data preservation security. We show the standardisation benefits for all stakeholders involved, and illustrate the application of our framework by focusing on marine animals and by providing examples of the workflow across all data levels, including filled templates and code to process data between levels, as well as templates to prepare netCDF files ready for sharing. Adoption of our framework will facilitate collection of Essential Ocean Variables (EOVs) in support of the Global Ocean Observing System (GOOS) and inter-governmental assessments (e.g. the World Ocean Assessment), and will provide a starting point for broader efforts to establish interoperable bio-logging data formats across all fields in animal ecology
    corecore