109 research outputs found

    Associations of CAIDE Dementia Risk Score with MRI, PIB-PET measures, and cognition

    Get PDF
    Background: CAIDE Dementia Risk Score is the first validated tool for estimating dementia risk based on a midlife risk profile. Objectives: This observational study investigated longitudinal associations of CAIDE Dementia Risk Score with brain MRI, amyloid burden evaluated with PIB-PET, and detailed cognition measures. Methods: FINGER participants were at-risk elderly without dementia. CAIDE Risk Score was calculated using data from previous national surveys (mean age 52.4 years). In connection to baseline FINGER visit (on average 17.6 years later, mean age 70.1 years), 132 participants underwent MRI scans, and 48 underwent PIB-PET scans. All 1,260 participants were cognitively assessed (Neuropsychological Test Battery, NTB). Neuroimaging assessments included brain cortical thickness and volumes (Freesurfer 5.0.3), visually rated medial temporal atrophy (MTA), white matter lesions (WML), and amyloid accumulation. Results: Higher CAIDE Dementia Risk Score was related to more pronounced deep WML (OR 1.22, 95% CI 1.05-1.43), lower total gray matter (beta- coefficient -0.29, p = 0.001) and hippocampal volume (beta- coefficient -0.28, p = 0.003), lower cortical thickness (beta-coefficient -0.19, p = 0.042), and poorer cognition (beta-coefficients -0.31 for total NTB score, -0.25 for executive functioning, -0.33 for processing speed, and -0.20 for memory, all p <0.001). Higher CAIDE Dementia Risk Score including APOE genotype was additionally related to more pronounced MTA (OR 1.15,95% CI 1.00-1.30). No associations were found with periventricular WML or amyloid accumulation. Conclusions: The CAIDE Dementia Risk Score was related to indicators of cerebrovascular changes and neurodegeneration on MRI, and cognition. The lack of association with brain amyloid accumulation needs to be verified in studies with larger sample sizes.Peer reviewe

    Familial idiopathic normal pressure hydrocephalus

    Get PDF
    Idiopathic normal pressure hydrocephalus (iNPH) is a late-onset surgically alleviated, progressive disease. We characterize a potential familial subgroup of iNPH in a nation-wide Finnish cohort of 375 shunt-operated iNPH-patients. The patients were questionnaired and phone-interviewed, whether they have relatives with either diagnosed iNPH or disease-related symptomatology. Then pedigrees of all families with more than one iNPH-case were drawn. Eighteen patients (4.8%) from 12 separate pedigrees had at least one shunt-operated relative whereas 42 patients (11%) had relatives with two or more triad symptoms. According to multivariate logistic regression analysis, familial iNPH-patients had up to 3-fold risk of clinical dementia compared to sporadic iNPH patients. This risk was independent from diagnosed Alzheimer's disease and APOE epsilon 4 genotype. This study describes a familial entity of iNPH offering a novel approach to discover the potential genetic characteristics of iNPH. Discovered pedigrees offer an intriguing opportunity to conduct longitudinal studies targeting potential preclinical signs of iNPH. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    Diabetes is associated with familial idiopathic normal pressure hydrocephalus : a case-control comparison with family members

    Get PDF
    Background The pathophysiological basis of idiopathic normal pressure hydrocephalus (iNPH) is still unclear. Previous studies have shown a familial aggregation and a potential heritability when it comes to iNPH. Our aim was to conduct a novel case-controlled comparison between familial iNPH (fNPH) patients and their elderly relatives, involving multiple different families. Methods Questionnaires and phone interviews were used for collecting the data and categorising the iNPH patients into the familial (fNPH) and the sporadic groups. Identical questionnaires were sent to the relatives of the potential fNPH patients. Venous blood samples were collected for genetic studies. The disease histories of the probable fNPH patients (n = 60) were compared with their >= 60-year-old relatives with no iNPH (n = 49). A modified Charlson Comorbidity Index (CCI) was used to measure the overall disease burden. Fisher's exact test (two-tailed), the Mann-Whitney U test (two-tailed) and a multivariate binary logistic regression analysis were used to perform the statistical analyses. Results Diabetes (32% vs. 14%, p = 0.043), arterial hypertension (65.0% vs. 43%, p = 0.033), cardiac insufficiency (16% vs. 2%, p = 0.020) and depressive symptoms (32% vs. 8%, p = 0.004) were overrepresented among the probable fNPH patients compared to their non-iNPH relatives. In the age-adjusted multivariate logistic regression analysis, diabetes remained independently associated with fNPH (OR = 3.8, 95% CI 1.1-12.9, p = 0.030). Conclusions Diabetes is associated with fNPH and a possible risk factor for fNPH. Diabetes could contribute to the pathogenesis of iNPH/fNPH, which motivates to further prospective and gene-environmental studies to decipher the disease modelling of iNPH/fNPH.Peer reviewe

    Whole exome sequencing study identifies novel rare and common Alzheimer's-Associated variants involved in immune response and transcriptional regulation

    Get PDF
    Correction: Volume: 25 Issue: 8 Pages: 1901-1903 DOI: 10.1038/s41380-019-0529-7The Alzheimer's Disease Sequencing Project (ADSP) undertook whole exome sequencing in 5,740 late-onset Alzheimer disease (AD) cases and 5,096 cognitively normal controls primarily of European ancestry (EA), among whom 218 cases and 177 controls were Caribbean Hispanic (CH). An age-, sex- andAPOEbased risk score and family history were used to select cases most likely to harbor novel AD risk variants and controls least likely to develop AD by age 85 years. We tested ~1.5 million single nucleotide variants (SNVs) and 50,000 insertion-deletion polymorphisms (indels) for association to AD, using multiple models considering individual variants as well as gene-based tests aggregating rare, predicted functional, and loss of function variants. Sixteen single variants and 19 genes that met criteria for significant or suggestive associations after multiple-testing correction were evaluated for replication in four independent samples; three with whole exome sequencing (2,778 cases, 7,262 controls) and one with genome-wide genotyping imputed to the Haplotype Reference Consortium panel (9,343 cases, 11,527 controls). The top findings in the discovery sample were also followed-up in the ADSP whole-genome sequenced family-based dataset (197 members of 42 EA families and 501 members of 157 CH families). We identified novel and predicted functional genetic variants in genes previously associated with AD. We also detected associations in three novel genes:IGHG3(p = 9.8 x 10(-7)), an immunoglobulin gene whose antibodies interact with beta-amyloid, a long non-coding RNAAC099552.4(p = 1.2 x 10(-7)), and a zinc-finger proteinZNF655(gene-based p = 5.0 x 10(-6)). The latter two suggest an important role for transcriptional regulation in AD pathogenesis.Peer reviewe

    Detecting Amyloid Positivity in Elderly With Increased Risk of Cognitive Decline

    Get PDF
    The importance of early interventions in Alzheimer's disease (AD) emphasizes the need to accurately and efficiently identify at-risk individuals. Although many dementia prediction models have been developed, there are fewer studies focusing on detection of brain pathology. We developed a model for identification of amyloid-PET positivity using data on demographics, vascular factors, cognition,APOEgenotype, and structural MRI, including regional brain volumes, cortical thickness and a visual medial temporal lobe atrophy (MTA) rating. We also analyzed the relative importance of different factors when added to the overall model. The model used baseline data from the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) exploratory PET sub-study. Participants were at risk for dementia, but without dementia or cognitive impairment. Their mean age was 71 years. Participants underwent a brain 3T MRI and PiB-PET imaging. PiB images were visually determined as positive or negative. Cognition was measured using a modified version of the Neuropsychological Test Battery. Body mass index (BMI) and hypertension were used as cardiovascular risk factors in the model. Demographic factors included age, gender and years of education. The model was built using the Disease State Index (DSI) machine learning algorithm. Of the 48 participants, 20 (42%) were rated as A beta positive. Compared with the A beta negative group, the A beta positive group had a higher proportion ofAPOE epsilon 4 carriers (53 vs. 14%), lower executive functioning, lower brain volumes, and higher visual MTA rating. AUC [95% CI] for the complete model was 0.78 [0.65-0.91]. MRI was the most effective factor, especially brain volumes and visual MTA rating but not cortical thickness.APOEwas nearly as effective as MRI in improving detection of amyloid positivity. The model with the best performance (AUC 0.82 [0.71-0.93]) was achieved by combiningAPOEand MRI. Our findings suggest that combining demographic data, vascular risk factors, cognitive performance,APOEgenotype, and brain MRI measures can help identify A beta positivity. Detecting amyloid positivity could reduce invasive and costly assessments during the screening process in clinical trials

    Copy number loss in SFMBT1 is common among Finnish and Norwegian patients with iNPH

    Get PDF
    Objective To evaluate the role of the copy number loss in SFMBT1 in a Caucasian population. Methods Five hundred sixty-seven Finnish and 377 Norwegian patients with idiopathic normal pressure hydrocephalus (iNPH) were genotyped and compared with 508 Finnish elderly, neurologically healthy controls. The copy number loss in intron 2 of SFMBT1 was determined using quantitative PCR. Results The copy number loss in intron 2 of SFMBT1 was detected in 10% of Finnish (odds ratio [OR] = 1.9, p = 0.0078) and in 21% of Norwegian (OR = 4.7, p <0.0001) patients with iNPH compared with 5.4% in Finnish controls. No copy number gains in SFMBT1 were detected in patients with iNPH or healthy controls. The carrier status did not provide any prognostic value for the effect of shunt surgery in either population. Moreover, no difference was detected in the prevalence of hypertension or T2DM between SFMBT1 copy number loss carriers and noncarriers. Conclusions This is the largest and the first multinational study reporting the increased prevalence of the copy number loss in intron 2 of SFMBT1 among patients with iNPH, providing further evidence of its role in iNPH. The pathogenic role still remains unclear, requiring further study.Peer reviewe

    Diabetes is associated with familial idiopathic normal pressure hydrocephalus: a case-control comparison with family members

    Get PDF
    Background The pathophysiological basis of idiopathic normal pressure hydrocephalus (iNPH) is still unclear. Previous studies have shown a familial aggregation and a potential heritability when it comes to iNPH. Our aim was to conduct a novel case-controlled comparison between familial iNPH (fNPH) patients and their elderly relatives, involving multiple different families. Methods Questionnaires and phone interviews were used for collecting the data and categorising the iNPH patients into the familial (fNPH) and the sporadic groups. Identical questionnaires were sent to the relatives of the potential fNPH patients. Venous blood samples were collected for genetic studies. The disease histories of the probable fNPH patients (n = 60) were compared with their >= 60-year-old relatives with no iNPH (n = 49). A modified Charlson Comorbidity Index (CCI) was used to measure the overall disease burden. Fisher's exact test (two-tailed), the Mann-Whitney U test (two-tailed) and a multivariate binary logistic regression analysis were used to perform the statistical analyses. Results Diabetes (32% vs. 14%, p = 0.043), arterial hypertension (65.0% vs. 43%, p = 0.033), cardiac insufficiency (16% vs. 2%, p = 0.020) and depressive symptoms (32% vs. 8%, p = 0.004) were overrepresented among the probable fNPH patients compared to their non-iNPH relatives. In the age-adjusted multivariate logistic regression analysis, diabetes remained independently associated with fNPH (OR = 3.8, 95% CI 1.1-12.9, p = 0.030). Conclusions Diabetes is associated with fNPH and a possible risk factor for fNPH. Diabetes could contribute to the pathogenesis of iNPH/fNPH, which motivates to further prospective and gene-environmental studies to decipher the disease modelling of iNPH/fNPH.</div
    corecore