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Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom

The importance of early interventions in Alzheimer’s disease (AD) emphasizes the
need to accurately and efficiently identify at-risk individuals. Although many dementia
prediction models have been developed, there are fewer studies focusing on detection
of brain pathology. We developed a model for identification of amyloid-PET positivity
using data on demographics, vascular factors, cognition, APOE genotype, and
structural MRI, including regional brain volumes, cortical thickness and a visual medial
temporal lobe atrophy (MTA) rating. We also analyzed the relative importance of different
factors when added to the overall model. The model used baseline data from the Finnish
Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)
exploratory PET sub-study. Participants were at risk for dementia, but without dementia
or cognitive impairment. Their mean age was 71 years. Participants underwent a brain
3T MRI and PiB-PET imaging. PiB images were visually determined as positive or
negative. Cognition was measured using a modified version of the Neuropsychological
Test Battery. Body mass index (BMI) and hypertension were used as cardiovascular risk
factors in the model. Demographic factors included age, gender and years of education.
The model was built using the Disease State Index (DSI) machine learning algorithm. Of
the 48 participants, 20 (42%) were rated as Aβ positive. Compared with the Aβ negative
group, the Aβ positive group had a higher proportion of APOE ε4 carriers (53 vs. 14%),
lower executive functioning, lower brain volumes, and higher visual MTA rating. AUC
[95% CI] for the complete model was 0.78 [0.65–0.91]. MRI was the most effective
factor, especially brain volumes and visual MTA rating but not cortical thickness. APOE
was nearly as effective as MRI in improving detection of amyloid positivity. The model
with the best performance (AUC 0.82 [0.71–0.93]) was achieved by combining APOE
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and MRI. Our findings suggest that combining demographic data, vascular risk factors,
cognitive performance, APOE genotype, and brain MRI measures can help identify Aβ

positivity. Detecting amyloid positivity could reduce invasive and costly assessments
during the screening process in clinical trials.

Keywords: amyloid beta, positron emission tomography, cognition, magnetic resonance imaging,
apolipoprotein E, machine learning, Alzheimer’s disease

INTRODUCTION

The importance of dementia prevention and early interventions
in Alzheimer’s disease (AD) (Winblad et al., 2016) has
emphasized the increasing need for accurate identification
of at-risk individuals who may benefit most from such
interventions. Although many dementia prediction
models have been developed (Hou et al., 2019), there
are considerably fewer studies focusing on detection of
brain pathology. Given the central role attributed to beta-
amyloid (Aβ) pathology in AD (Dubois et al., 2007), early
identification of individuals with Aβ pathology has become
particularly important.

The prevalence of Aβ pathology from ages 50 to 80 years
has been estimated to range from 10 to 33% in cognitively
normal individuals, and from 27 to 60% in individuals with
mild cognitive impairment (MCI) (Jansen et al., 2015). This
complicates the screening process in e.g., randomized controlled
trials testing interventions that target Aβ, since assessment of Aβ

pathology in cerebrospinal fluid (CSF) or on positron emission
tomography (PET) scans can easily become inefficient due to
invasiveness, costs, and/or PET availability. Developing models
for detecting Aβ pathology based on less invasive, less costly,
and more easily available factors could help identify a target
population with high prevalence of Aβ pathology. More selective
use of CSF or PET assessments to confirm the presence of
Aβ pathology could thus reduce costly screening failures and
improve screening efficiency.

Previous models for Aβ pathology, were most commonly
developed in mixed populations including individuals with AD
dementia and/or MCI (e.g., Bahar-Fuchs et al., 2013; Tosun
et al., 2013, 2014; Burnham et al., 2014; Apostolova et al.,
2015; Haghighi et al., 2015; Lee et al., 2018; Westwood et al.,
2018; Palmqvist et al., 2019; Ansart et al., 2020), with area
under the receiver operating characteristic curve (AUC) values
up to 0.87–0.88. Very few studies have focused specifically on
cognitively normal populations, despite the key importance of
this group who could potentially benefit from interventions
that are started early, before the onset of cognitive impairment.
Lower performance has been reported for models developed in
cognitively normal individuals, with AUC values up to 0.74–
0.77 (Mielke et al., 2012; Insel et al., 2016; ten Kate et al., 2018;
Ansart et al., 2020). Models for detecting Aβ pathology have
most often been developed based on demographic data, cognitive
performance, and apolipoprotein E (APOE) genotype. Of the
studies in cognitively normal individuals, two have also included
structural magnetic resonance imaging (MRI) (ten Kate et al.,
2018; Ansart et al., 2020).

In this study, we first aim to develop a model for detecting
Aβ pathology in individuals with risk factors for dementia,
but without dementia or substantial cognitive impairment. We
assess a broad range of factors, including demographic data,
cardiovascular factors, cognitive performance, APOE genotype,
and brain MRI measures. Both visual rating of medial temporal
lobe atrophy (MTA) and quantitative measures of regional brain
volumes and cortical thickness are considered. The second
aim is to conduct a pragmatic analysis on the added value of
the different factors, taking into account how easily obtainable
they are in clinical settings, i.e., from less complex to more
specialized. The model uses baseline data from the Finnish
Geriatric Intervention Study to Prevent Cognitive Impairment
and Disability (FINGER) exploratory PET sub-study.

MATERIALS AND METHODS

Participants
The FINGER main study design and population characteristics
have been previously described (Kivipelto et al., 2013; Ngandu
et al., 2014). In brief, FINGER (ClinicalTrials.gov identifier
NCT01041989) was a 2-year randomized controlled trial testing
a multidomain lifestyle intervention versus regular health advice
in 1260 older individuals at risk for dementia from the general
population. Results showing intervention benefits on the primary
and secondary cognitive outcomes, as well as on several other
outcomes, have been published (Ngandu et al., 2015).

The exploratory PET sub-study included 48 individuals from
the Turku site in FINGER main study and was conducted
at the Turku PET Centre. The 48 participants were selected
from the most recently recruited individuals when MRI/PET
resources became available at the Turku site, and if there
were no contraindications. Participants had to be eligible for
MRI and PET scans, in addition to meeting all inclusion
criteria for the FINGER main study: age 60 to 77 years;
Cardiovascular Risk Factors, Aging, and Dementia (CAIDE)
score at or above six points indicating elevated risk for
dementia; and cognitive performance at the mean level or
slightly lower than expected for age according to Finnish
population norms for the Consortium to Establish a Registry
for Alzheimer’s Disease (CERAD) test as previously described
in detail (Kivipelto et al., 2013). Participants had to meet at
least one of the following criteria: word list memory task results
≤19 words; word list recall ≤ 75%; or mini mental state
examination ≤26 points. Individuals with diagnosed dementia
or suspected dementia or substantial cognitive impairment
based on screening assessments were excluded from the study.
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Additionally, participants with MMSE score < 20, a disorder
that would affect safe engagement in the intervention, loss of
hearing, vision or ability to communicate, a disorder preventing
cooperation; or participation in another intervention trial
were also excluded.

The FINGER PET population was not significantly different
from the rest of the Turku cohort or the rest of the FINGER
participants regarding education, vascular risk factors, or APOE
e4 carrier status (Kemppainen et al., 2018). FINGER PET
participants were slightly older than the rest of the FINGER
population at the baseline visit (mean 70.8 vs. 69.3 years), most
likely due to a later initiation of recruitment at the Turku study
site (Kemppainen et al., 2018).

The FINGER study was approved by the Coordinating
Ethics Committee of the Hospital District of Helsinki and
Uusimaa. All participants gave written informed consent at
the screening and baseline visits, and also for the exploratory
neuroimaging sub-study.

Clinical Assessments and APOE
Genotyping
The present study used data from the FINGER baseline visit,
before the start of the intervention. Cognition was measured
using a modified version of the Neuropsychological Test Battery
(mNTB) (Harrison et al., 2007). A standardized composite
mNTB score was determined based on 14 individual tests
measuring three different cognitive domains, i.e., memory,
executive function, and processing speed. Domain-specific
standardized mNTB scores were also calculated as previously
described (Ngandu et al., 2015), with higher scores indicating
better performance. Height, weight, and blood pressure were
measured (Ngandu et al., 2014), and body mass index (BMI)
and hypertension (systolic blood pressure ≥140 mmHg and/or
diastolic blood pressure ≥90 mmHg) were used as vascular
risk factors in the model. Genomic DNA was extracted from
venous blood samples with Chemagic MSM1 (PerkinElmer)
using magnetic beads. APOE genotype was determined by
polymerase chain reaction using TaqMan genotyping assays
(Applied Biosystems) for two single-nucleotide polymorphisms
(rs429358 and rs7412) and an allelic discrimination method on
the Applied Biosystems 7500 platform (De La Vega et al., 2005).

MRI and PET Imaging
Participants in the FINGER PET sub-study underwent a brain 3T
MRI (Philips Ingenuity TF PET/MR, Amsterdam, Netherlands)
and 11C-Pittsburgh compound B (PiB)-PET imaging. The
MRI and PiB-PET protocols have been previously published
(Kemppainen et al., 2018). PiB images were visually determined
as positive or negative by two-party consensus agreement.
PiB negative individuals had only non-specific 11C-PiB-PET
retention in white matter, whereas PiB positive individuals had
11C-PiB-PET retention in at least one AD-specific cortical region.

Regional brain volumes and cortical thickness were measured
on MRI scans using FreeSurfer (version 5.3)1. Brain volumes
were normalized to total intracranial volume to take into account

1http://surfer.nmr.mgh.harvard.edu

variations in head size. An AD-signature cortical thickness
measure was calculated as the average of cortical thickness in the
entorhinal, inferior and middle temporal, and fusiform regions
(Jack et al., 2015). Additionally, visual assessment of MTA was
conducted by a single rater blinded to clinical data based on a T1-
weighted coronal slice. MTA was graded on the Scheltens scale
from 0 to 4 (Scheltens et al., 1992).

Statistical Analysis
The population was characterized by calculating group means
and standard deviations. Statistical significance of group
differences was examined using the Wilcoxon rank sum test for
continuous and categorical data.

We used a machine-learning algorithm (Disease State Index,
DSI) to detect PiB-PET positivity with clinical, APOE and MRI
data as factors. DSI is a supervised machine learning method
developed at the VTT Technical Research Centre of Finland
(Mattila et al., 2011). Its accuracy is comparable to other methods
such as logistic regression, support vector machines, and Bayes
inference (Mattila et al., 2011), and it has been successful in
modeling MCI progression (Hall et al., 2015) and discriminating
between dementia types (Koikkalainen et al., 2016; Tolonen
et al., 2018). DSI classifies individuals into Aβ positive and
negative based on a population with known Aβ status (training
population). An individual’s data are compared with value
distributions in the training population with a fitness function.

f (x) =
FN(x)

FN (x)+ FP(x)
(1)

The fitness function f calculates a value for each measurement
value x, where FN is the false negative error and FP is the
false positive error for prediction at measurement value x. The
analysis puts more weight on factors that show more pronounced
dissimilarities between the positive and negative groups in the
training population with a relevance value. The relevance is
calculated by adding sensitivity and specificity and substracting 1.

relevance = sensitivity+ specificity− 1. (2)

This is also known as the Youden index. The grouped index
values, such as overall MRI, are calculated by taking a relevance
weighted average over fitness of each measurement. Recursively,
a new fitness and relevance is defined for groups, from which the
total DSI value is defined.

DSI =
∑

i relevancei × fitnessi∑
i relevancei

(3)

The resulting DSI value for an individual represents a point
on the scale 0–1, where higher values denote higher similarity
to Aβ positive individuals in the training population. A separate
training population was not used in this study, but the data were
cross-validated by randomly selecting 80% of the population for
training and 20% for testing, and then repeating the procedure
100 times for statistically reliable results (100 × 5-fold cross
validation). The classification results are shown as area under
the receiver-operator curve (AUC) for the model, with 95%
confidence intervals (CI) averaged from the folds.
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Advantages of the DSI include the ability to incorporate a large
number of factors simultaneously, and permissive requirements
for types and distribution characteristics of the data. Missing
values are ignored as part of the model, and the total DSI
value is calculated from the available data. Over learning is a
challenge especially when the sample size is small. DSI defines
a classifier for each predictor separately and combines these
classifiers making it less sensitive to over learning than methods
based on complex decision boundaries. Conceptually related and
potentially correlated factors can be structured into groups to
assess their combined effect. Individual factors are combined into
a group DSI value through a weighted average, and the process
is then repeated recursively for all groups to obtain a total DSI
value. DSI thus provides detailed information about performance
on multiple levels simultaneously: the independent performance
of each factor, the combined performance of a group of similar
factors, and the overall performance of the entire model.

In this study, factors were organized into groups according
to conceptual likeness: Demographic (age, sex, education),
Cardiovascular (BMI, hypertension), APOE genotype (ε4 carrier
vs. non-carrier), Cognition (mNTB total, memory, processing
speed, and executive function), and MRI. Subgroups were defined
for MRI measures (Volumes, Visual MTA score, and AD-
signature cortical thickness) for a more detailed assessment of
performance. Additional analyses were conducted to assess the
added value of different factor groups (modalities), taking into
account how easily obtainable they are in clinical settings. This
was done by assessing performance of the model after step-by-
step inclusion or exclusion of different factor groups.

All analyses were performed using MATLAB R2015b.
DSI values were calculated using Fingerprint Toolbox
version 0.9 on MATLAB.

RESULTS

Population characteristics according to Aβ status on PiB-PET
scans are shown in Table 1. Of the 48 participants, 20 (42%)
were rated as Aβ positive. Compared with the Aβ negative
group, the Aβ positive group had a higher proportion of APOE
ε4 carriers (53 vs. 14%), lower executive functioning, lower
brain volumes (total cortical and gray matter volumes, cerebellar
cortex, thalamus proper, putamen, hippocampus, amygdala, the
accumbens area, and ventral diencephalon), and higher visual
MTA rating. No significant differences were found in other
characteristics (Table 1).

The performance of the complete DSI model, factor groups
and individual factors is shown in Table 2. The AUC of
the complete model after cross-validation was 0.78 (95% CI
0.65–0.91). Model AUC without cross-validation (training and
testing with all individuals) was 0.88. Table 3 shows sensitivity,
specificity, and positive and negative predictive values for
different DSI cutoff values. For example, setting the DSI
cutoff value for positive classification at 0.5 would identify a
sub-population with a true Aβ positivity prevalence (positive
predictive value, PPV) of 65%, with 69% sensitivity, 69%
specificity, and 77% negative predictive value (NPV). If only

TABLE 1 | Population characteristics according to amyloid status on PiB-PET
scans.

Mean (SD)

Amyloid-
(n = 28)

Amyloid +

(n = 20)
p-value

Demographic

Sex/Female 14 (50%) 8 (40%) 0.505

Age (years) 70.2 (5.8) 71.6 (3.5) 0.310

Education (years) 9.7 (2.9) 8.9 (2.0) 0.320

Cardiovascular

Body mass index 27.9 (3.6) 26.2 (2.6) 0.088

High blood pressure 10 (36%) 9 (45%) 0.529

APOE (e4 carrier)† 4 (14%) 10 (53%) 0.005

Cognition

mNTB Total 0.04 (0.53) −0.09 (0.50) 0.421

mNTB Memory −0.11 (0.52) 0.04 (0.64) 0.385

mNTB Processing speed 0.16 (0.95) −0.10 (0.77) 0.184

mNTB Executive function 0.16 (0.58) −0.22 (0.44) 0.026

MRI

Volumes

Total cortex 0.29 (0.03) 0.27 (0.03) 0.007

Total gray matter 0.39 (0.05) 0.36 (0.04) 0.009

Cerebellum cortex 0.063 (0.009) 0.059 (0.008) 0.027

Thalamus proper 9.3×10−3

(1.2×10−3)
8.4×10−3

(1.1×10−3)
0.022

Caudate 4.9×10−3

(8.6×10−4)
4.5×10−3

(7.7×10−4)
0.070

Putamen 7.0×10−3

(1.3×10−3)
6.1×10−3

(1.0×10−3)
0.014

Pallidum 1.9×10−3

(3.5×10−4)
1.8×10−3

(2.9×10−4)
0.198

Brain Stem 0.014 (0.002) 0.014 (0.002) 0.229

Hippocampus 5.2×10−3

(9.7×10−4)
4.6×10−3

(8.1×10−4)
0.019

Amygdala 2.3×10−3

(4.6×10−4)
2.0×10−3

(3.0×10−4)
0.030

Accumbens area 6.6×10−4

(1.3×10−4)
5.6×10−4

(1.3×10−4)
0.004

Ventral diencephalon 5.0×10−3

(5.7×10−4)
4.7×10−3

(4.1×10−4)
0.037

Cerebrospinal fluid 8.8×10−4

(1.4×10−4)
8.1×10−4

(1.4×10−4)
0.171

Optic chiasm 1.4×10−4

(3.6×10−5)
1.2×10−4

(4.6×10−5)
0.164

Total corpus callosum 2.0×10−3

(4.3×10−4)
1.7×10−3

(3.8×10−4)
0.058

Visual MTA rating (Scheltens) 1.0 (0.7) 1.6 (0.7) 0.007

AD-signature cortical thickness 2.8 (0.1) 2.7 (0.1) 0.084

The Wilcoxon rank sum test was used to calculate p-values for differences between
amyloid positive and negative groups. APOE, Apolipoprotein E; mNTB, modified
Neuropsychological Test Battery; MRI, magnetic resonance imaging; MTA, medial
temporal lobe atrophy; AD, Alzheimer’s disease. †: Amyloid + n = 19.

individuals with a DSI value ≥ 0.5 undergo PiB-PET scans, this
would lead to an increase in the rate of Aβ positive scans from
42% (observed in FINGER PET study participants) to 65%. Using
a higher cutoff for Aβ positivity prediction, such as 0.6, could
increase the positive scan rate to 74%, but at a lower sensitivity
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TABLE 2 | Performance for the full model, factor groups and individual factors for
detecting amyloid positivity.

Amyloid + relative
to amyloid-

AUC (95% CI)

Composite DSI 0.78 (0.65–0.91)

Demographic 0.54 (0.37–0.70)

Sex/Female ↓ 0.48 (0.35–0.60)

Age ↑ 0.45 (0.28–0.61)

Education (years) ↓ 0.59 (0.43–0.75)

Cardiovascular 0.60 (0.46–0.75)

Body mass index ↓ 0.65 (0.50–0.79)

High blood pressure ↑ 0.49 (0.37–0.61)

APOE (e4 carrier) ↑ 0.69 (0.56–0.82)

Cognition 0.65 (0.49–0.81)

mNTB Total ↓ 0.55 (0.38–0.72)

mNTB Memory ↑ 0.54 (0.38–0.70)

mNTB Processing speed ↓ 0.57 (0.41–0.73)

mNTB Executive function ↓ 0.69 (0.53–0.84)

MRI 0.75 (0.61–0.89)

Volumes 0.72 (0.57–0.88)

Total cortex ↓ 0.73 (0.59–0.88)

Total gray matter ↓ 0.72 (0.57–0.88)

Cerebellum cortex ↓ 0.69 (0.54–0.84)

Thalamus proper ↓ 0.70 (0.55–0.85)

Caudate ↓ 0.65 (0.49–0.81)

Putamen ↓ 0.71 (0.56–0.87)

Pallidum ↓ 0.61 (0.45–0.77)

Brain Stem ↓ 0.61 (0.45–0.77)

Hippocampus ↓ 0.70 (0.54–0.86)

Amygdala ↓ 0.69 (0.53–0.85)

Accumbens area ↓ 0.75 (0.62–0.89)

Ventral diencephalon ↓ 0.68 (0.53–0.83)

Cerebrospinal fluid ↓ 0.61 (0.44–0.78)

Optic chiasm ↓ 0.60 (0.41–0.78)

Total corpus callosum ↓ 0.62 (0.45–0.79)

Visual MTA rating (Scheltens) ↑ 0.71 (0.59–0.84)

AD-signature cortical thickness ↓ 0.65 (0.48–0.82)

Upward arrow indicates the amyloid + group having a larger mean value. AUC
values (95% confidence interval) are from 100 × 5-cross-validation. AUC, area
under the receiver operating characteristic curve; DSI, disease state index; APOE,
Apolipoprotein E; mNTB, modified neuropsychological test battery; MRI, magnetic
resonance imaging; MTA, medial temporal lobe atrophy; AD, Alzheimer’s disease.

(39%). Similarly, using a lower cutoff, such as 0.4, the positive
scan rate would be 57% and sensitivity 87%.

Among the groups of factors included in the model, structural
MRI measures together had the best performance, with an overall
AUC (95% CI) of 0.75 (0.61–0.89). Within the MRI group, the
most effective subgroups were volumetric measures (AUC 0.72,
CI 0.57–0.88) and visual MTA rating (AUC 0.71, CI 0.59–0.84),
while AD-signature cortical thickness had lower performance
(AUC 0.65, CI 0.48–0.82). APOE ε4 carrier status had an AUC
(95% CI) of 0.69 (0.56–0.82). The Cognition group of factors
had an AUC (95% CI) of 0.65 (0.49–0.81), and within this group
executive functioning had an AUC of 0.69 (0.53–0.84). Other
cognitive measures did not have detection power. BMI was the
strongest factor (AUC 0.65, CI 0.50–0.79) in the cardiovascular

group, although the group level AUC (95% CI) was low at 0.60
(0.46–0.75). Demographic factors had the poorest performance
with years of education having the highest within-group AUC of
0.59 (0.43–0.75), and age and sex showing no effect.

Table 4 shows the added value of different groups of factors
in terms of model performance. In the first scenario, a base
model with only demographic and cardiovascular data (AUC
0.56, CI 0.41–0.72) was augmented by adding a single factor
group (Cognition, APOE, Visual MTA rating, or all MRI
measurements). The AUC improved to 0.62–0.71, but only
addition of APOE or MRI data led to a CI above 0.50 indicating
a significant model. All MRI measurements together had the
highest added performance (AUC 0.71, 95% CI 0.56–0.85),
followed by APOE ε4 carrier status (AUC 0.69, CI 0.56–0.83).

The second scenario used a base model including
demographic and cardiovascular factors, and cognition (AUC
0.62, 95% CI 0.46–0.77). Adding APOE or all MRI measures
enhanced the model performance to an AUC (95% CI) of 0.71
(0.56–0.85) and 0.72 (0.58–0.87), respectively. Visual MTA rating
improved the AUC (95% CI) only to 0.66 (0.51–0.82).

The third scenario tested the added value of the simple visual
MTA rating instead of the more comprehensive automated MRI
measures. The base model using all factors except MRI led to
AUC (95% CI) 0.71 (0.56–0.85). Visual MTA rating increased
AUC to 0.75 (0.62–0.89), with the complete model performing
at 0.78 (0.65–0.91). We also tested a fourth scenario focusing on
the combination of APOE and MRI, the two best performing
factor groups. APOE together with either visual MTA rating
(AUC 0.81, 95% CI 0.69–0.92) or all MRI measurements (AUC
0.82, 95% CI 0.71–0.93) performed better as a combination than
the complete model.

The relative importance of the different subgroups of MRI
factors is shown in Table 4. MRI factor subgroups were removed
one-by-one from a base model. With a base model including
all MRI measures, AUC (95% CI) decreased from 0.76 (0.62–
0.90) to 0.72 (0.57–0.86) by removing volumetric measures, and
to 0.74 (0.60–0.89) by removing visual MTA rating. Removing
AD-signature cortical thickness did not affect the performance of
the base model. With a base model including all MRI measures
and APOE, removing AD-signature cortical thickness slightly
improved the model performance, while removing volumetric
measures decreased the AUC.

DISCUSSION

Findings from the exploratory FINGER PET sub-study suggest
that a model combining demographic data, vascular risk
factors, cognitive performance, APOE genotype, and brain MRI
measures can detect Aβ positivity in older at-risk individuals
without dementia or substantial cognitive impairment. Given
the lower prevalence of Aβ pathology among cognitively
normal individuals (Jansen et al., 2015), such a model would
facilitate the identification of populations with a considerably
higher prevalence, thus reducing the number of invasive, time-
consuming and costly assessments during e.g., the screening
process in clinical trials. The DSI model allows selecting a
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TABLE 3 | Classifier statistics for selected DSI cutoff levels for detecting amyloid positivity.

DSI cutoff Sensitivity (%) Specificity (%) PPV (%) NPV (%) RPP (%)

0.0 100 0 42 (42–42) 100

0.1 100 1 (0–1) 42 (42–42) 100 100 (99–100)

0.2 100 11 (10–12) 45 (45–45) 100 93 (93–94)

0.3 99 (98–99) 26 (24–27) 49 (49–50) 98 (96–99) 85 (84–86)

0.4 87 (86–89) 49 (47–50) 57 (55–58) 87 (85–88) 66 (65–68)

0.5 69 (67–71) 69 (68–71) 65 (63–66) 77 (76–79) 47 (45–48)

0.6 39 (37–41) 89 (88–90) 74 (71–77) 68 (67–69) 23 (22–24)

0.7 17 (16–19) 96 (95–97) 77 (74–81) 62 (62–63) 9 (9–10)

0.8 12 (11–13) 99 (99–100) 94 (92–97) 61 (61–62) 5 (5–6)

0.9 1 (1–2) 100 (100–100) 100 (100–100) 59 (58–59) 1 (0–1)

1.0 0 100 58 (58–58) 0

Values are mean values (95% confidence interval) from 100 × 5-cross-validation. Values with no confidence interval are exact values. DSI, Disease state index; PPV,
positive predictive value; NPV, negative predictive value, RPP rate of positive prediction.

suitable threshold depending on the situation. An index threshold
of 0.5 gives the best balance with sensitivity and specificity
of the model. Using a low cut-off, such as 0.4 would mean
very high sensitivity, but a large number of subsequent PET
scans. This would mostly remove the cases that are likely to
be amyloid negative. Usually, when trying to find participants
with amyloid pathology, it might be more useful to choose
a higher cut-off, such as 0.6, to ensure that a large number
of participants are not needlessly subjected to a PET scan to
verify amyloid positivity. This could be useful in a scenario,
where we needed to select study participants who were amyloid
positive, but did not want to do a PET scan on the whole
cohort due to cost issues or minimizing possible harm or
inconvenience on the participants. Performance of the complete
DSI model including MRI was AUC 0.78, and 0.71 without
MRI. Both could be considered “acceptable” as per Hosmer
et al. (2013) criteria. Previously reported models in cognitively
normal individuals have had AUCs in the range of 0.60–
0.74 (Mielke et al., 2012; ten Kate et al., 2018; Ansart et al.,
2020), with the highest performance for a support vector
machine (SVM) model combining demographics, cognitive
performance, APOE genotype and detailed structural MRI
measures (ten Kate et al., 2018).

Similar to the abovementioned SVM model (ten Kate et al.,
2018), MRI and APOE were the best factors in this study.
Brain volumes with the highest performance (AUC ≥ 0.70)
were total cortical and gray matter volumes, and hippocampus,
accumbens, thalamus and putamen volumes, which have been
previously reported to be lower in cognitively normal Aβ

positive individuals (ten Kate et al., 2018). Visual MTA
rating was almost as effective as brain volumes, although
it was not selected in the previous SVM model (ten Kate
et al., 2018). The AD-signature cortical thickness had lower
performance than brain volumes or visual MTA rating in the
FINGER PET population.

Very few studies in cognitively normal participants have
investigated the added value of structural MRI in the detection
of Aβ pathology. One study reported that best results were
obtained without MRI, and that change in cognition over
time was a superior substitute to MRI in a multimodal

TABLE 4 | Added value of different groups of factors in terms of model
performance.

AUC (95% CI)

Demographic and Cardiovascular 0.56 (0.41–0.72)

and additionally Cognition 0.62 (0.46–0.77)

APOE (e4 carrier) 0.69 (0.56–0.83)

Visual MTA rating 0.66 (0.51–0.81)

MRI all modalities 0.71 (0.56–0.85)

Demographic, Cardiovascular, and Cognition 0.62 (0.46–0.77)

and additionally APOE 0.71 (0.56–0.85)

Visual MTA rating 0.66 (0.51–0.82)

MRI all modalities 0.72 (0.58–0.87)

Demographic, Cardiovascular, Cognition, and APOE 0.71 (0.56–0.85)

and additionally Visual MTA rating 0.75 (0.62–0.89)

MRI all modalities (complete model) 0.78 (0.65–0.91)

APOE 0.69 (0.57–0.81)

and additionally Visual MTA rating 0.81 (0.69–0.92)

MRI all modalities 0.82 (0.71–0.93)

MRI subgroup analysis

All MRI modalities 0.76 (0.62–0.90)

without Volumes 0.72 (0.57–0.86)

Visual MTA rating 0.74 (0.60–0.89)

AD-signature cortical thickness 0.76 (0.62–0.89)

All MRI modalities and APOE 0.82 (0.71–0.93)

without Volumes 0.79 (0.66–0.91)

Visual MTA rating 0.82 (0.71–0.93)

AD-signature cortical thickness 0.83 (0.71–0.95)

In each scenario (highlighted in bold type), factor groups are added one-by-one
to a base model. In the MRI subgroup analysis, factor groups are removed one-
by-one from a base model. AUC values (95% confidence interval) are 100 × 5-
cross-validated. MRI, magnetic resonance imaging; AUC, area under the receiver
operating characteristic curve; APOE, Apolipoprotein E; MTA, medial temporal lobe
atrophy; AD, Alzheimer’s disease.

prediction model (Ansart et al., 2020). In another study, MRI
measures did have an added value above other factors (ten
Kate et al., 2018). Similar findings emphasizing the added
value of MRI were observed in the FINGER PET sub-study.
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In addition, the leave-one-out analysis of the MRI factor
group indicated brain volumes as the best factors, while AD-
signature cortical thickness did not have any added value.
Given that visual MTA rating, which is easier to obtain in
clinical settings, performed almost as well as brain volumes,
it may represent a useful alternative to the more complex
volumetric measures.

Apolipoprotein E ε4 carrier status was very effective in
improving the results and adding APOE to basic clinical
data was almost as effective as performing an MRI scan.
APOE and MRI together, in the absence of any other
factors, led to better performance compared with the
complete model (AUC 0.81–0.82 vs. 0.78). This is because
the model showed that several factors in the demographic,
cardiovascular and cognitive groups were not useful in detecting
amyloid positivity.

Regarding cognition, executive functioning was most
effective, with an individual AUC of about the same magnitude
as APOE genotype. Cognition as a group was, however, not
as valuable in different combinations of factor modalities
as APOE or MRI measures. In contrast, the previous
SVM model (ten Kate et al., 2018) emphasized memory
among the tested cognitive domains. This may be due to
population differences, i.e., FINGER participants underwent
cognitive screening to select individuals with performance
at the mean level or slightly lower than expected for age,
thus limiting the distribution of cognitive test scores in
the present study.

Among vascular factors, BMI had some ability to detect
amyloid positivity, but not hypertension. Low BMI at younger-
old ages has previously been associated with Aβ load (Ewers
et al., 2012; Toledo et al., 2012), although these studies also
included individuals with MCI and dementia at baseline.
However, the performance of vascular factors may have
been influenced by the use of the CAIDE dementia risk
score (including age, sex, education, BMI, systolic blood
pressure, total serum cholesterol and physical activity) (Kivipelto
et al., 2006) to select the at-risk FINGER study participants.
FINGER eligibility criteria may also explain why age did
not associate with Aβ positivity in this population, despite
being reported as a clear determinant of Aβ pathology in
individuals with normal cognition or MCI, with Aβ pathology
prevalence growing rapidly after about the age of 70 years
(Jansen et al., 2015).

The main limitations of the present study are the small
sample size leading to potential model overfitting effects, and
the lack of external validation. However, while the sample size
is limited, the ratio of amyloid positive and negative cases is
balanced. The same dataset was used for both training and testing
the DSI model, although we reported results following nested
100× 5 cross-validation. Findings need to be interpreted keeping
in mind that FINGER participants had already undergone a
screening process based on cognitive testing and the CAIDE
dementia risk score, i.e., they represent a population at risk
for dementia, but without dementia or substantial cognitive
impairment. Studies in independent populations will be needed
to further validate the results. Testing the model with a

larger sample could show more effects for age, cognition and
vascular factors. There was no significant association between
age and amyloid positivity in our sample, likely due to the
original selection process, which only recruited participants
aged 60–77, who were at-risk for cognitive impairment. This
would exclude healthier young subjects and more cognitively
impaired older subjects, which could make the amyloid-age
association less prominent.

Compared with previous studies in cognitively normal
populations, the present study assessed a broader range of
factors, and performance at multiple levels simultaneously,
i.e., from the overall model to groups of conceptually related
factors and also individual factors. We also investigated
different screening strategies, i.e., the benefit of adding more
complex factor modalities, by testing the performance of
increasingly comprehensive models, from easily obtainable
demographic, clinical and cognitive data, to APOE genotyping
and structural brain MRI.
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