3 research outputs found

    Multiplex blood reporters for simultaneous monitoring of cellular processes

    Get PDF
    Contains fulltext : 125685.pdf (publisher's version ) (Open Access)Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have shown to be useful tools for simple and noninvasive monitoring of biological processes in real-time. Here, we characterize the naturally secreted Vargula luciferase as a secreted blood reporter and show that this reporter can be multiplexed with the secreted Gaussia luciferase and alkaline phosphatase for simultaneous monitoring of three different cellular processes in the same biological system. We applied this system to monitor the response of three different subsets of glioma cells to a clinically relevant chemotherapeutic agent in the same well in culture or animal in vivo. This system could be extended to any field to detect multiple processes in the same biological system and is amenable for high-throughput screening to find drugs that affect multiple cellular populations/phenomena simultaneously

    Multiplex Blood Reporters for Simultaneous Monitoring of Cellular Processes

    No full text
    Reporters secreted into the conditioned medium of cells in culture or into blood in vivo have shown to be useful tools for simple and noninvasive monitoring of biological processes in real-time. Here, we characterize the naturally secreted <i>Vargula</i> luciferase as a secreted blood reporter and show that this reporter can be multiplexed with the secreted <i>Gaussia</i> luciferase and alkaline phosphatase for simultaneous monitoring of three different cellular processes in the same biological system. We applied this system to monitor the response of three different subsets of glioma cells to a clinically relevant chemotherapeutic agent in the same well in culture or animal in vivo. This system could be extended to any field to detect multiple processes in the same biological system and is amenable for high-throughput screening to find drugs that affect multiple cellular populations/phenomena simultaneously

    Functional movement disorder gender, age and phenotype study: a systematic review and individual patient meta-analysis of 4905 cases

    No full text
    : Functional movement disorder (FMD) is a common manifestation of functional neurological disorder presenting with diverse phenotypes such as tremor, weakness and gait disorder. Our current understanding of the basic epidemiological features of this condition is unclear. We aimed to describe and examine the relationship between age at onset, phenotype and gender in FMD in a large meta-analysis of published and unpublished individual patient cases. An electronic search of PubMed was conducted for studies from 1968 to 2019 according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Individual patient data were collected through a research network. We described the distribution of age of onset and how this varied by gender and motor phenotype. A one-stage meta-analysis was performed using multilevel mixed-effects linear regression, including random intercepts for country and data source. A total of 4905 individual cases were analysed (72.6% woman). The mean age at onset was 39.6 years (SD 16.1). Women had a significantly earlier age of onset than men (39.1 years vs 41.0 years). Mixed FMD (23.1%), tremor (21.6%) and weakness (18.1%) were the most common phenotypes. Compared with tremor (40.7 years), the mean ages at onset of dystonia (34.5 years) and weakness (36.4 years) were significantly younger, while gait disorders (43.2 years) had a significantly later age at onset. The interaction between gender and phenotype was not significant. FMD peaks in midlife with varying effects of gender on age at onset and phenotype. The data gives some support to 'lumping' FMD as a unitary disorder but also highlights the value in 'splitting' into individual phenotypes where relevant
    corecore