27 research outputs found

    A functional study of the endocannabinoid system in zebrafish neurodevelopment: implications in vision and locomotion

    Get PDF
    The endocannabinoid system (ECS) is constituted by a group of endogenous arachidonate-based lipids [endocannabinoids (eCBs)] and their receptors, capable of regulating neuronal excitability as well as a variety of physiological processes. The 2-Arachidonoylglycerol (2-AG) is a retrograde neurotransmitter present at relatively high levels in the central nervous system, with cannabinoid neuromodulatory effects on synaptic transmission in the adult brain. Recently, several lines of evidence have demonstrated the presence of eCBs, their receptors and metabolizing enzymes, also in early stages of brain development, suggesting an important role of ECS in the regulation of neural progenitor proliferation and specification as well as migration and differentiation. In this study we focus on the importance of 2-AG signaling in central nervous system development, with the aim to investigate the role of 2-AG in the development and differentiation of neurons, and in the formation of neuronal circuits that control spontaneous locomotion and visual system, using zebrafish as model organism. The vertebrate Danio rerio (zebrafish) represents a valid animal model system to study eCB biology, since phylogenetic analyses of the zebrafish ECS have demonstrated that it is highly conserved with the mammalian counterpart. Here we report the presence of a complete endocannabinoid system during zebrafish development and show that the genes coding for enzymes that catalyze the anabolism and catabolism (daglα and mgll respectively) of the endocannabinoid 2-AG, as well as its main receptor in the brain, cannabinoid receptor type 1 (cnr1), are co-expressed in defined regions of neurogenesis and axogenesis. Through the use of morpholino-induced transient knockdown of the zebrafish daglα and its pharmacological rescue, we suggest that the synthesis of 2-AG is implicated in the control of axon formation in defined areas of the developing brain, such as optic tectum, cerebellum and optic nerve. Animals lacking Daglα display defective axonal growth and fasciculation, and abnormal physiological behaviors in tests measuring stereotyped eye movement and motion perception. Moreover the use of daglα morpholino in the zebrafish transgenic line 'ath5:gap-gfp', in which it is possible to follow the retinal ganglion cells (RGC) pathfinding, reveals abnormalities in RGC fiber tracts and in the correct arborization in the optic tectum. Furthermore, pharmacological treatments using antagonists of the two main zebrafish eCBs receptors (CB1 and CB2) suggest their putative role in the correct formation of the tectal neuropile in transgenic line 'ath5:gap-gfp' and in the correct lamination of neuroretina in SoFa line, in which all the major retina neuronal subtypes are labeled simultaneously. In details, pharmacological treatments using antagonists of CB1 receptor suggest its putative role in the correct formation of the tectal neuropile in zebrafish transgenic line 'ath5:gap-gfp'. On the other hands, by using SoFa zebrafish line, in which all the major retina neuronal subtypes are simultaneously labeled, similar treatments highlight the possible role of CB2 in the correct lamination of neuroretina by regulating the number and positioning of interneurons (amacrine cells) in the inner plexiform layer of developing retina. Animals treated with these antagonists display also defective swimming behavior, suggesting, in addition, the implication of CB1 and CB2 receptors in the correct formation of neuronal circuits that control spontaneous locomotion. In conclusion, our results point to the important role of eCBs as mediators in axonal outgrowth with implications in the control of vision and movement, highlighting that the well-established role of 2-AG in axon guidance is required in brain areas that control locomotor and optokinetic functions. On the other hand, the eCBs receptors CB1 and CB2 can specifically regulate the formation of retinotectal system, the differentiation and lamination of zebrafish neuroretina, as well as direct the control of swimming behaviour

    Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation

    Get PDF
    <div><p>Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in <i>Cftr<sup>F508del</sup></i> homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the <i>F508del-CFTR</i> mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from <i>F508del</i> homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both <i>in vivo</i>, in mice, and <i>in vitro</i>, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 <i>F508del-CFTR</i> homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells <i>in vivo</i>, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of <i>TNF/TNF-alpha (tumor necrosis factor)</i> and <i>CXCL8</i> (<i>chemokine [C-X-C motif] ligand 8</i>) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the <i>F508del-CFTR</i> mutation.</p></div

    The leukemia inhibitory factor regulates fibroblast growth factor receptor 4 transcription in gastric cancer

    Get PDF
    Purpose: The gastric adenocarcinoma (GC) represents the third cause of cancer-related mortality worldwide, and available therapeutic options remain sub-optimal. The Fibroblast growth factor receptors (FGFRs) are oncogenic transmembrane tyrosine kinase receptors. FGFR inhibitors have been approved for the treatment of various cancers and a STAT3-dependent regulation of FGFR4 has been documented in the H.pylori infected intestinal GC. Therefore, the modulation of FGFR4 might be useful for the treatment of GC.MethodsTo investigate wich factors could modulate FGFR4 signalling in GC, we employed RNA-seq analysis on GC patients biopsies, human patients derived organoids (PDOs) and cancer cell lines.ResultsWe report that FGFR4 expression/function is regulated by the leukemia inhibitory factor (LIF) an IL-6 related oncogenic cytokine, in JAK1/STAT3 dependent manner. The transcriptomic analysis revealed a direct correlation between the expression of LIFR and FGFR4 in the tissue of an exploratory cohort of 31 GC and confirmed these findings by two external validation cohorts of GC. A LIFR inhibitor (LIR-201) abrogates STAT3 phosphorylation induced by LIF as well as recruitment of pSTAT3 to the promoter of FGFR4. Furthermore, inhibition of FGFR4 by roblitinib or siRNA abrogates STAT3 phosphorylation and oncogentic effects of LIF in GC cells, indicating that FGFR4 is a downstream target of LIF/LIFR complex. Treating cells with LIR-201 abrogates oncogenic potential of FGF19, the physiological ligand of FGFR4.ConclusionsTogether these data unreveal a previously unregnized regulatory mechanism of FGFR4 by LIF/LIFR and demonstrate that LIF and FGF19 converge on the regulation of oncogenic STAT3 in GC cells

    Akap1 deficiency promotes mitochondrial aberrations and exacerbates cardiac injury following permanent coronary ligation via enhanced mitophagy and apoptosis

    Get PDF
    A-kinase anchoring proteins (AKAPs) transmit signals cues from seven-transmembrane receptors to specific sub-cellular locations. Mitochondrial AKAPs encoded by the Akap1 gene have been shown to modulate mitochondrial function and reactive oxygen species (ROS) production in the heart. Under conditions of hypoxia, mitochondrial AKAP121 undergoes proteolytic degradation mediated, at least in part, by the E3 ubiquitin ligase Seven In-Absentia Homolog 2 (Siah2). In the present study we hypothesized that Akap1 might be crucial to preserve mitochondrial function and structure, and cardiac responses to myocardial ischemia. To test this, eight-week-old Akap1 knockout mice (Akap1(-/-)), Siah2 knockout mice (Siah2(-/-)) or their wild-type (wt) littermates underwent myocardial infarction (MI) by permanent left coronary artery ligation. Age and gender matched mice of either genotype underwent a left thoracotomy without coronary ligation and were used as controls (sham). Twenty-four hours after coronary ligation, Akap1(-/-) mice displayed larger infarct size compared to Siah2(-/-) or wt mice. One week after MI, cardiac function and survival were also significantly reduced in Akap1(-/-) mice, while cardiac fibrosis was significantly increased. Akap1 deletion was associated with remarkable mitochondrial structural abnormalities at electron microscopy, increased ROS production and reduced mitochondrial function after MI. These alterations were associated with enhanced cardiac mitophagy and apoptosis. Autophagy inhibition by 3-methyladenine significantly reduced apoptosis and ameliorated cardiac dysfunction following MI in Akap1(-/-) mice. These results demonstrate that Akap1 deficiency promotes cardiac mitochondrial aberrations and mitophagy, enhancing infarct size, pathological cardiac remodeling and mortality under ischemic conditions. Thus, mitochondrial AKAPs might represent important players in the development of post-ischemic cardiac remodeling and novel therapeutic targets

    Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial

    Get PDF
    Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes

    Sea cucumbers: an emerging system in evo-devo

    No full text
    Abstract A challenge for evolutionary developmental (evo-devo) biology is to expand the breadth of research organisms used to investigate how animal diversity has evolved through changes in embryonic development. New experimental systems should couple a relevant phylogenetic position with available molecular tools and genomic resources. As a phylum of the sister group to chordates, echinoderms extensively contributed to our knowledge of embryonic patterning, organ development and cell-type evolution. Echinoderms display a variety of larval forms with diverse shapes, making them a suitable group to compare the evolution of embryonic developmental strategies. However, because of the laboratory accessibility and the already available techniques, most studies focus on sea urchins and sea stars mainly. As a comparative approach, the field would benefit from including information on other members of this group, like the sea cucumbers (holothuroids), for which little is known on the molecular basis of their development. Here, we review the spawning and culture methods, the available morphological and molecular information, and the current state of genomic and transcriptomic resources on sea cucumbers. With the goal of making this system accessible to the broader community, we discuss how sea cucumber embryos and larvae can be a powerful system to address the open questions in evo-devo, including understanding the origins of bilaterian structures

    The complete mitochondrial genome of the white seabream Diplodus sargus (Perciformes: Sparidae) from the Tyrrhenian sea

    No full text
    The white seabream Diplodus sargus (Linnaeus, 1758) is a species of interest for commercial fisheries throughout its range of distribution and it is also reared using aquaculture techniques. Herein, we present the first complete sequence and annotation of the mitochondrial genome of this species. The D. sargus mitogenome is 16,515 base pairs in length and contains 13 protein-coding genes, 2 rRNA, 22 tRNA, and 2 non-coding regions (D-loop and L-origin). The overall nucleotide composition is: 27.3% A, 28.9% C, 26.8% T, and 17.0% G. Maximum likelihood analyses placed D. sargus as a sister species of Diplodus puntazzo. This study provides valuable information for further studying identification methods and evolutionary relationships of Sparidae species

    Biological relevance of ZNF224 expression in chronic lymphocytic leukemia and its implication IN NF-kB pathway regulation

    No full text
    Chronic lymphocytic leukemia (CLL) is a heterogeneous disease, whose presentation and clinical course are highly variable. Identification of novel prognostic factors may contribute to improving the CLL classification and providing indications for treatment options. The zinc finger protein ZNF224 plays a key role in cell transformation, through the control of apoptotic and survival pathways. In this study, we evaluated the potential application of ZNF224 as a novel marker of CLL progression and therapy responsiveness. To this aim, we analyzed ZNF224 expression levels in B lymphocytes from CLL patients at different stages of the disease and in patients showing different treatment outcomes. The expression of ZNF224 was significantly increased in disease progression and dramatically decreased in patients in complete remission after chemotherapy. Gene expression correlation analysis performed on datasets of CLL patients revealed that ZNF224 expression was well correlated with that of some prognostic and predictive markers. Moreover, bioinformatic analysis coupled ZNF224 to NF-κB pathway, and experimental data demonstrated that RNA interference of ZNF224 reduced the activity of the NF-κB survival pathway in CLL cells. Consistently with a pro-survival role, ZNF224 knockdown raised spontaneous and drug-induced apoptosis and inhibited the proliferation of peripheral blood mononuclear cells from CLL patients. Our findings provide evidence for the involvement of ZNF224 in the survival of CLL cells via NF-κB pathway modulation, and also suggest ZNF224 as a prognostic and predictive molecular marker of CLL disease

    RET/PTC1 oncogene signaling in PC Cl 3 thyroid cells requires the small GTP-binding protein Rho.

    No full text
    Thyroid papillary carcinomas are characterized by RET/PTC rearrangements that cause the tyrosine kinase domain of the RET receptor to fuse with N-terminal sequences encoded by heterologous genes. This results in the aberrant expression of a ligand-independent and constitutively active RET kinase. We analysed actin reorganization induced by the RET/PTC1 oncogene in PC Cl 3 rat thyroid epithelial cells. Differently from oncogenes Src, Ras and Raf, RET/PTC1 caused actin filaments to form prominent stress fibers. Moreover, stress fibers were identified in human thyroid papillary carcinoma cell lines harboring RET/PTC1 rearrangements but not in thyroid carcinoma cells negative for RET/PTC rearrangements. RET/MEN 2A, a constitutively active but unrearranged membrane-bound RET oncoprotein, did not induce stress fibers in PC Cl 3 cells. Induction of stress fibers by RET/PTC1 was restricted to thyroid cells; it did not occur in NIH3T3 fibroblasts or MCF7 mammary cells. RET/PTC1-mediated stress fiber formation depended on Rho but not Rac small GTPase activity. In addition, inhibition of Rho, but not of Rac, caused apoptosis of RET/PTC1-expressing thyroid cells. We conclude that Rho is implicated in the actin reorganization and cell survival mediated by the chimeric RET/PTC1 oncogene in thyroid epithelial cells, both phenotypes being cell type- and oncogene type-specific
    corecore