2,735 research outputs found

    Cluster X-ray line at 3.5 keV3.5\,{\rm keV} from axion-like dark matter

    Get PDF
    The recently reported X-ray line signal at Eγ≃3.5 keVE_\gamma \simeq 3.5\, {\rm keV} from a stacked spectrum of various galaxy clusters and the Andromeda galaxy may be originating from a decaying dark matter particle of the mass 2EΞ³2 E_\gamma. A light axion-like scalar is suggested as a natural candidate for dark matter and its production mechanisms are closely examined. We show that the right amount of axion relic density with the preferred parameters, ma≃7 keVm_a \simeq 7 \,{\rm keV} and fa≃4Γ—1014 GeVf_a \simeq 4\times 10^{14}\, {\rm GeV}, can be naturally obtainable from the decay of inflaton. If the axions were produced from the saxion decay, it could not have constituted the total relic density due to the bound from structure formation. Nonetheless, the saxion decay is an interesting possibility, because the 3.5 keV3.5\, {\rm keV} line and dark radiation can be addressed simultaneously, being consistent with the Planck data. Small misalignment angles of the axion, ranging between ΞΈa∼10βˆ’4βˆ’10βˆ’1\theta_a\sim 10^{-4} -10^{-1} depending on the reheating temperature, can also be the source of axion production. The model with axion misalignment can satisfy the constraints for structure formation and iso-curvature perturbation.Comment: 14 pages, significant changes in the form, matched to the journal versio

    Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer

    Get PDF
    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the pn junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it. Β© 2012 Baek et al.1

    Visfatin Induces Sickness Responses in the Brain

    Get PDF
    BACKGROUND/OBJECTIVE: Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor, is a pro-inflammatory cytokine whose serum level is increased in sepsis and cancer as well as in obesity. Here we report a pro-inflammatory role of visfatin in the brain, to mediate sickness responses including anorexia, hyperthermia and hypoactivity. METHODOLOGY: Rats were intracerebroventricularly (ICV) injected with visfatin, and changes in food intake, body weight, body temperature and locomotor activity were monitored. Real-time PCR was applied to determine the expressions of pro-inflammatory cytokines, proopiomelanocortin (POMC) and prostaglandin-synthesizing enzymes in their brain. To determine the roles of cyclooxygenase (COX) and melanocortin in the visfatin action, rats were ICV-injected with visfatin with or without SHU9119, a melanocortin receptor antagonist, or indomethacin, a COX inhibitor, and their sickness behaviors were evaluated. PRINCIPAL FINDINGS: Administration of visfatin decreased food intake, body weight and locomotor activity and increased body temperature. Visfatin evoked significant increases in the levels of pro-inflammatory cytokines, prostaglandin-synthesizing enzymes and POMC, an anorexigenic neuropeptide. Indomethacin attenuated the effects of visfatin on hyperthermia and hypoactivity, but not anorexia. Further, SHU9119 blocked visfatin-induced anorexia but did not affect hyperthermia or hypoactivity. CONCLUSIONS: Visfatin induced sickness responses via regulation of COX and the melanocortin pathway in the brain

    Visible emission from Ce-doped ZnO nanorods grown by hydrothermal method without a post thermal annealing process

    Get PDF
    Visible light-emitting Ce-doped ZnO nanorods [NRs] without a post thermal annealing process were grown by hydrothermal method on a Si (100) substrate at a low temperature of 90Β°C. The structural investigations of Ce-doped ZnO NRs showed that the Ce3+ ions were successfully incorporated into the ZnO lattice sites without forming unwanted Ce-related compounds or precipitates. The optical investigation by photoluminescence spectra shows that the doped Ce3+ ions in the ZnO NRs act as an efficient luminescence center at 540 nm which corresponds to the optical transition of 5d β†’ 4f orbitals in the Ce3+ ions. The photoluminescence intensity of the Ce-doped ZnO NRs increased with the increasing content of the Ce-doping agent because the energy transfer of the excited electrons in ZnO to the Ce3+ ions would be enhanced by increased Ce3+ ions

    PutidaNET: Interactome database service and network analysis of Pseudomonas putida KT2440

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pseudomonas putida </it>KT2440 (<it>P. putida </it>KT2440) is a highly versatile saprophytic soil bacterium. It is a certified bio-safety host for transferring foreign genes. Therefore, the bacterium is used as a model organism for genetic and physiological studies and for the development of biotechnological applications. In order to provide a more systematic application of the organism, we have constructed a protein-protein interaction (PPI) network analysis system of <it>P. putida </it>KT2440.</p> <p>Results</p> <p>PutidaNET is a comprehensive interaction database and server of <it>P. putida </it>KT2440 which is generated from three protein-protein interaction (PPI) methods. We used PSIMAP (Protein Structural Interactome MAP), PEIMAP (Protein Experimental Interactome MAP), and Domain-domain interactions using iPfam. PutidaNET contains 3,254 proteins, and 82,019 possible interactions consisting of 61,011 (PSIMAP), 4,293 (PEIMAP), and 30,043 (iPfam) interaction pairs except for self interaction. Also, we performed a case study by integrating a protein interaction network and experimental 1-DE/MS-MS analysis data <it>P. putida</it>. We found that 1) major functional modules are involved in various metabolic pathways and ribosomes, and 2) existing PPI sub-networks that are specific to succinate or benzoate metabolism are not in the center as predicted.</p> <p>Conclusion</p> <p>We introduce the PutidaNET which provides predicted interaction partners and functional analyses such as physicochemical properties, KEGG pathway assignment, and Gene Ontology mapping of <it>P. putida </it>KT2440 PutidaNET is freely available at <url>http://sequenceome.kobic.kr/PutidaNET</url>.</p

    Enhancement of phase separation in the InGaN layer for self-assembled In-rich quantum dots

    Get PDF
    The enhancement of phase separation in the InGaN layer grown on a GaN layer with a rough surface was investigated for the formation of self-assembled In-rich quantum dots(QDs) in the InGaN layer. Transmission electron microscopy images showed that In-rich QDs with a size of 2–5 nm were formed even in an InGaN layer with a low indium content, and a layer thickness less than the critical thickness. The room-temperature photoluminescence(PL) spectrum of this layer showed emission peaks corresponding to In-rich QDs. The temperature-dependent PL spectra showed dominant peak shifts to the lower energy side, indicating that the self-assembled In-rich QDs are formed in the InGaN layer grown on a rough GaNsurface and that the carriers are localized in In-rich QDs

    Dual-Organ Transcriptomic Analysis of Rainbow Trout Infected With Ichthyophthirius multifiliis Through Co-Expression and Machine Learning

    Get PDF
    Ichthyophthirius multifiliis is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transcriptomic responses in the liver and head kidney and hemato-serological indexes were profiled under I. multifiliis infection and recovery to investigate systemic immuno-physiological characteristics. Several strategies for massive transcriptomic interpretation, such as differentially expressed genes (DEGs), Poisson linear discriminant (PLDA), and weighted gene co-expression network analysis (WGCNA) models were used to investigate the featured genes/pathways while minimizing the disadvantages of individual methods. During the course of infection, 6,097 and 2,931 DEGs were identified in the head kidney and liver, respectively. Markers of protein processing in the endoplasmic reticulum, oxidative phosphorylation, and the proteasome were highly expressed. Likewise, simultaneous ferroptosis and cellular reconstruction was observed, which is strongly linked to multiple organ dysfunction. In contrast, pathways relevant to cellular replication were up-regulated in only the head kidney, while endocytosis- and phagosome-related pathways were notably expressed in the liver. Moreover, interestingly, most immune-relevant pathways (e.g., leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis) were highly activated in the liver, but the same pathways in the head kidney were down-regulated. These conflicting results from different organs suggest that interpretation of co-expression among organs is crucial for profiling of systemic responses during infection. The dual-organ transcriptomics approaches presented in this study will greatly contribute to our understanding of multi-organ interactions under I. multifiliis infection from a broader perspective.publishedVersio

    SoEasy: A Software Framework for Easy Hardware Control Programming for Diverse IoT Platforms

    Get PDF
    Many Internet of Things (IoT) applications are emerging and evolving rapidly thanks to widespread open-source hardware platforms. Most of the high-end open-source IoT platforms include built-in peripherals, such as the universal asynchronous receiver and transmitter (UART), pulse width modulation (PWM), general purpose input output (GPIO) ports and timers, and have enough computation power to run embedded operating systems such as Linux. However, each IoT platform has its own way of configuring peripherals, and it is difficult for programmers or users to configure the same peripheral on a different platform. Although diverse open-source IoT platforms are widespread, the difficulty in programming those platforms hinders the growth of IoT applications. Therefore, we propose an easy and convenient way to program and configure the operation of each peripheral using a user-friendly Web-based software framework. Through the implementation of the software framework and the real mobile robot application development along with it, we show the feasibility of the proposed software framework, named SoEasy
    • …
    corecore