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Abstract The recently reported X-ray line signal at Eγ �
3.5 keV from a stacked spectrum of various galaxy clusters
and the Andromeda galaxy may be originating from a decay-
ing dark matter particle of the mass 2Eγ . A light axion-like
scalar is suggested as a natural candidate for dark matter and
its production mechanisms are closely examined. We show
that the right amount of axion relic density with the pre-
ferred parameters, ma � 7 keV and fa � 4 × 1014 GeV,
can be naturally obtainable from the decay of inflaton. If the
axions were produced from the saxion decay, it could not
have constituted the total relic density due to the bound from
structure formation. Nonetheless, the saxion decay is an inter-
esting possibility, because the 3.5 keV line and dark radiation
can be addressed simultaneously, being consistent with the
Planck data. Small misalignment angles of the axion, rang-
ing between θa ∼ 10−4–10−1 depending on the reheating
temperature, can also be the source of axion production. The
model with axion misalignment can satisfy the constraints
for structure formation and iso-curvature perturbation.

1 Introduction

It has been recently reported by two groups that there exists a
line signal at 3.5 keV in a stacked X-ray spectrum of galaxy
clusters and the Andromeda galaxy [1,2]. Since no source
of X-ray lines, such as atomic transitions, is known at this
energy, the observed line may suggest the existence of a new
source. It would be tantalizing to notice that the line is con-
sistent with the monochromatic photon signal due to a decay-
ing dark matter (DM) with the mass, mDM � 7 keV, and the
lifetime, τDM � 1028 s [1,2]. Even though a further confir-
mation of the line by independent and refined observations,
e.g. Astro-H mission [3], is required, it would be timely and
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interesting to investigate the possible DM candidates with
existing data. One obvious candidate is the sterile neutrino
in models for the neutrino masses [1,2,4] but there could be
alternative DM explanations [5,6].

In this paper, we propose an axion-like particle as the
source of the X -ray line at 3.5 keV.1 Axion-like particles (or
simply axions) are ubiquitous in various extensions of the
SM including stringy models with various compactification
schemes where pseudo-Goldstone bosons appear in the low
energy after the breakdown of accidental global symmetries
[7]. The mass spectra of the axion-like particles can span a
wide range, covering the keV scale. We may identify one of
them as the axion-like particle explaining the X-ray line.2 The
axion-like particle could be produced in the early universe
by various mechanisms and account for the observed DM
amount: e.g. the axion misalignment, the decay of the radial
partner of the axion-like DM, dubbed the saxion, and also
the decay of the inflaton. We show that an axion-like DM,
produced preferably in the decay of the inflaton, can provide
a good fit to the observed X-ray line by its decay into a
pair of photons through anomaly interactions with the decay
constant, fa � 4 × 1014 GeV.

The rest of the paper is organized as follows. In Sect. 2,
we describe our model for an axion-like DM and discuss
the cosmological bounds from structure formation and iso-
curvature perturbation in Sect. 3. In Sect. 4, three scenarios of
axion production and relevant observational bounds on them
are discussed. Finally, conclusions are drawn in Sect. 5.

2 The model with a 7 keV axion for the X-ray line

We introduce an axion-like particle as a pseudo-Goldstone
boson associated with a broken anomalous U (1) symmetry.

1 We note that there have appeared related papers on the keV axion
dark matter [8,9] while we were finalizing our work.
2 The axion-like particles, in general, do not play the role of the QCD
axion.
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After the symmetry breaking, the model-independent effec-
tive Lagrangian for the axion a and the saxion s (the radial
component of the symmetry-breaking field) can be expressed
as

L = 1

2
(∂μs)2 + 1

2
(∂μa)2 + s

2 fa
(∂μa)2 − 1

2
m2

s s2

−1

2
m2

aa2−1

4
Fμν Fμν+c1αem

8π fa
(aFμν F̃μν − s Fμν Fμν)

+ c2

fa
(∂μa) f̄ γ μγ 5 f + i f̄ /Dμγ μ f − m f f f̄

−(m f ec3(s+ia)/ fa f̄L fR + h.c.) + LI (1)

where αem is the fine structure constant of electromagnetic
interaction, fa is the axion coupling constant, and Fμν and
F̃μν are the field-strength tensor and its dual for electromag-
netic field, respectively. We note that c1,2,3 are dimension-
less parameters of order one and we have included an extra
charged fermion f that is responsible for the generation of
anomalies. For example, in a supersymmetric axion model
[10,11], the axion chiral multiplet A with A|θ=0 = s + ia
appears in the superspace interactions as

∫
d2θ AW αWα and∫

d2θ m f ec3 A/ fa 		̄ where Wα is the field strength super-
field, and 	 and 	̄ are matter chiral multiplets containing
the extra charged fermion. But the results in our work do not
depend on the presence of supersymmetry. We can add the
Lagrangian for inflation, LI .

For a keV-scale axion, the first term of the second line in
Eq. (1) provides the main decay channel with a rate given by


a→γ γ = α2
emm3

a

64π3 f 2
a

(2)

where we set c1 = 1 for simplicity. This axion decay can be a
possible origin of the recently reported X -ray line at 3.5 keV,
if the axion saturates the dark matter relic density and has the
following properties [1,2]:

ma = 7.1 keV, τa = 1.14 × 1028 s

or 
a = 5.73 × 10−53 GeV (3)

where τa is the lifetime of the axion. This implies that the
axion coupling constant should be

fa � 4 × 1014 GeV
( ma

7 keV

)3/2
. (4)

For notational convenience in the later section, we use fa,0 ≡
4 × 1014 GeV.

3 Cosmological constraints

Our keV-scale axion can be constrained by astrophysics
and cosmology, namely, the structure formation or the iso-
curvature perturbation of dark matter, depending on how the
axion is produced.

• Structure formation
The keV axion may be a decay product of the inflaton
and/or the saxion. Suppose that a mother particle, denoted
as X , decays to two axions, each of which carries the
energy of

Ea,i = m X/2 (5)

when the axion mass is ignored. The axion of our inter-
est is expected to be out of thermal equilibrium at tem-
peratures well below GUT scale [9]. Hence the momen-
tum of the axion is simply red-shifted once it is pro-
duced from the decay of X . Then, in order not to destruct
large scale structures, the axion should be non-relativistic
around the epoch when a Hubble patch contains energy
corresponding to the galactic-sized halo (corresponding
to T ∼ T∗ ≡ 300 eV) (see for example [12,13]).
More precisely, the most recent analysis of Lyman-α for-
est data shows that the comoving free-streaming length of
DM at the matter-radiation equality is constrained to be
at 95 % CL [14]

λfs < λc
fs ≈ 0.12 Mpc (6)

where we introduced λc
fs representing the observational

bound on the free-streaming length. Including the previ-
ous various analyses of Lyman-α forest data [15] and the
phase space densities derived from the dwarf galaxies of
the Milky way [16–18], leads to the bound on the free-
streaming length ranging between 0.12 Mpc � λc

fs �
0.60 Mpc. The comoving free-streaming length of the
axion produced from the decay of a mother particle X
is computed as

λfs ≡
∫ teq

τX

vadt

R(t)
=

∫ tnr

τX

dt

R(t)
+

∫ teq

tnr

vadt

R(t)

= 2tnr

Rnr

[

1 −
(

τX

tnr

)1/2

+ 1

2
ln

(
teq

tnr

)]

≈ 1

H0

(
H0


X

)1/2 (
m X/2

ma

) (
Teq

T0

)1/4

×
{

1 + 1

2
ln

[

X

H0

(
ma

m X/2

)2 (
T0

Teq

)3/2
]}

(7)

where va is the velocity of the axion, R(t) is the scale fac-
tor, tnr is the time when the axion becomes non-relativistic,
and τX (
X ) is the lifetime (decay rate) of X , related to the
decay temperature TX by τX = (π2g∗/90)−1/2 MP/T 2

X .
In the second line, we used R(t) = Req(t/teq)

1/2 for
t < teq, and va(t) = (tnr/t)1/2 for tnr � t � teq.
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The constraint Eq. (6) is now interpreted as

TX

m X
� 0.2

(
0.12 Mpc

λc
fs

)(
200

g∗(TX )

)1/4 (
7 keV

ma

)

(8)

where {· · · } in the last line of Eq. (7) was approximated
to {· · · } = 8.27.

• Iso-curvature perturbation
Axions in our scenario can be produced by either the decay
of inflaton/saxion or the axion misalignment. In the case
of saxion decay, the iso-curvature perturbation of the sax-
ion is potentially problematic. However, it could be sup-
pressed since the saxion could have a Hubble scale mass
during inflation. So, we consider only the case of axion
misalignment in our discussion.
The recent Planck data combined with WMAP polariza-
tion data leads to a constraint on the fraction of the iso-
curvature perturbation by [19]

PS

PR
< 0.041, (9)

at 95 % CL, where PR � 2.2 × 10−9 and PS are the
power spectra of curvature and iso-curvature perturba-
tions, respectively. The iso-curvature perturbation of the
axion dark matter can be expressed as [20]

PS =
(

r
∂ ln �a

∂θosc

HI

2π f I
a

)2

(10)

where r is the fractional contribution of axion DM to the
observed relic density of DM, θosc is the initial misalign-
ment angle,3 and HI is the expansion rate during inflation,
and f I

a is the axion coupling constant during inflation. As
described in the next section, for θosc � 1, �a ∝ θ2

osc,
hence one finds

HI � 1.2 × 106 GeV

r

(
θosc

10−4

)(
f I
a

fa

)

. (11)

Note that f I
a can be much larger than fa at zero tempera-

ture. In addition, θosc can be O(1) if the axion relic density
can be diluted by some amount due to, for example, a late-
time entropy production.

4 Scenarios of axion production

Axion-like scalars can be produced from decays of heavy par-
ticles or coherent oscillations. In this section, we discuss how

3 We assume the misalignment angle is constant until the commence-
ment of axion coherent oscillation.

we can obtain a right amount of the keV-scale axion while
satisfying various constraints given in the previous section.
In particular, we consider the axion production from the infla-
ton/saxion decay and the axion misalignment in both cases of
high and low reheating temperatures after primordial infla-
tion. In order to match the relic density of dark matter to
the observed one, �a = 0.268 [19], we quote the necessary
axion abundance at present as

Ya � 6.9 × 10−5
(

7 keV

ma

)

. (12)

4.1 Inflaton decay

In inflation scenarios where the inflaton is responsible for
the density perturbation of the present universe, the inflaton
should decay mainly to SM particles. It can also partially
decay to axions we are considering now (see for example
Ref. [21] for producing dark matter from the decay of infla-
ton). In the sudden decay approximation, the axion abun-
dance from such a partial decay of the inflaton is given by

Ya = 3

4

TR

m I

Br I→aa

Br I→SM
� 0.75 Br I→aa

(
TR

m I

)

(13)

where Br I→aa and Br I→SM are respectively the branching
fractions of inflaton (I ) to axions and to SM particles, and TR

and m I are the reheating temperature and mass of inflaton,
respectively. We assumed Br I→SM � 1 in the far right side of
Eq. (13). Comparing Eq. (13) to Eq. (8)4 and (12), we find that
a right amount of the axion relic density can be obtained while
satisfying the constraint from structure formation, provided
that

Br I→aa � 4.6 × 10−4
(

λc
fs

0.12 Mpc

) (
g∗(TR)

200

)1/4

. (14)

4.2 Saxion decay

The saxion, the radial component of the complex field con-
taining the axion, can play a crucial role in the axion pro-
duction, since it can decay into a pair of axions via the axion
kinetic term,

L ⊃ 1

2

s

fa
(∂a)2 . (15)

In this case, the decay rate of the saxion to a pair of axions
is given by


s→aa = 1

64π

m3
s

f 2
a

. (16)

4 We assumed that the momentum of inflaton was red-shifted and neg-
ligible relative to its mass when it decayed. Otherwise, the dependence
on the momentum of inflaton would have had to be included. We thank
Anupam Mazumdar for pointing this out.
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In the presence of an extra heavy charged fermion coupled
with the saxion via a Yukawa coupling in the following form:

L ⊃ −λs f̄ f, (17)

there is an additional contribution to the saxion decay rate,


s→ f̄ f =
λ2

8π
ms

(

1−4m2
f

m2
s

)3/2

=c2
3m2

f ms

8π f 2
a

(

1 − 4m2
f

m2
s

)3/2

where in the far right-hand side, the Yukawa interaction
from the effective Lagrangian in Eq. (1) was used. Then,
for 
s→aa � 
s→ f̄ f , the branching fraction of the saxion
decaying to a pair of axions is given by

Brs→aa � m2
s

8c2
3m2

f

>
1

2c2
3

. (18)

Thus, for |c3| = O(1–10) which may be a natural expecta-
tion, we obtain Brs→aa = O(10−2–0.1) that may match to
all the requirements in some region of parameter space, as
discussed in the following sections.

In the early universe, the saxion might be at the broken
phase with HI � ms , but it could undergo a coherent oscil-
lation as H � ms . Then, the saxion decay might be the
main source of axion production, although structure forma-
tion constrains the branching fraction to axions, similarly to
the case of inflaton decay. In the following argument, for
simplicity, we express the full decay width of the saxion as


s = 
s→aa/Brs→aa (19)

and we will use the sudden decay approximation for saxion
decay.

• High TR

If the saxion decays while the universe is dominated by
radiation, the temperature of the universe right after the
decay of the saxion is given by

Ts =
(

π2

90
g∗(Ts)

)−1/4 √

s→aa MPl/Brs→aa, (20)

where Eq. (19) was used in the right-hand side. We find
that the constraint from structure formation (Eq. (8)) is
now translated to

Brs→aa � BrHTR,fs
s→aa ≡ 3.98 × 10−3

(
λc

fs

0.12 Mpc

)2

×
( ms

1010 GeV

) (
fa,0

fa

)2 ( ma

7 keV

)2
. (21)

The abundance of axions produced from the decay of the
saxion is given by

Ya = 2Brs→aaYs(ts), (22)

where ts is the time when saxion decays. If the saxion is
produced via coherent oscillation at ts,osc and decays at ts
while the universe is dominated by radiation, we obtain
Ys(ts) = Ys(ts,osc)where Ys(ts,osc) is the initial abundance
of the saxion in coherent oscillation, given by

Ys(ts,osc) ∼
(

fa

MPl

)2 (
MPl

ms

)1/2

� 4.3 × 10−4
(

fa

fa,0

)2 (
1010 GeV

ms

)1/2

. (23)

Here, we assumed that the initial saxion misalignment is
almost the same as the axion decay constant fa . Then,
from Eqs. (12), (22), and (23), one finds the condition for
a right amount of the axion dark matter,

Brs→aa ∼ BrHTR,rd
s→aa

≡ 8.0 × 10−2
(

7 keV

ma

)(
fa,0

fa

)2 ( ms

1010 GeV

)1/2
.

(24)

Comparing Eqs. (21) and (24), we find that there could
exist a viable parameter space for fa = fa,0 if λc

fs is
pushed up to the value over 0.54 Mpc, corresponding to
about 1 keV mass of thermal warm dark matter. How-
ever, such a large free-streaming length is in a strong ten-
sion with structure formation, being excluded by the most
recent analysis of Lyman-α forest data at the 9σ CL [14].
We now take a smaller fa , for which the axion does not
saturate the observed relic density DM but the observed
flux of the X -ray line can be still obtained. Even in this
case, since the abundance of the axion is proportional to
f 2
a , the photon flux caused by the decay of the axion does

not depend on fa . Therefore, the required Brs→aa is given
by

Brs→aa ∼ BrHTR,3.5
s→aa

≡ 8.0 × 10−2
(

7 keV

ma

)( ms

1010 GeV

)1/2
, (25)

which does not depend on fa . Note that, if the abundance
of the axion is much smaller than the observed relic den-
sity of DM, the constraint on the free-streaming length of
the axion is irrelevant as long as the axion DM is non-
relativistic around the epoch of CMB decoupling. Partic-
ularly, if the energy density of axion is about or less than
O(10) % of active neutrino species, the axion can play the
role of dark radiation and only the correct photon spectrum
would require v2

a � O(0.1) with va being the velocity of
axion at present. However, it turns out that the require-
ment does not generate any new stronger constraint on
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Brs→aa . The Brs→aa required to have a fractional axion
DM, r ≡ �a/�CDM is

Brs→aa ∼ r × BrHTR,rd
s→aa . (26)

The energy contribution of axion dark radiation is given
by

ρa

ρν

= r
�CDM

�r

ρr

ρν

=
[

3 + 8

7

(
11

4

)4/3
]

�CDM

�r
r (27)

and it is constrained to be ρa/ρν ≤ �N bnd
eff ≡ 0.26 [22].

Hence one finds

r ≤
[

3 + 8

7

(
11

4

)4/3
]−1 (

�r

�CDM

)

�N bnd
eff

= 1.16 × 10−5

(
�N bnd

eff

0.26

)

. (28)

Therefore, in order to have a sizable axion dark radiation
matching to observation, one needs

Brs→aa ∼ BrHTR,DR
s→aa ≡

[

3 + 8

7

(
11

4

)4/3
]−1

×
(

�r

�CDM

)

�N bnd
eff BrHTR,rd

s→aa . (29)

Equating Eqs. (25) and (29), we find that the amount of
hinted dark radiation and the 3.5 keV X -ray line can be
explained simultaneously if

fa

fa,0
� 3.4 × 10−3

(
�Neff

0.26

)1/2

(30)

and Brs→aa = BrHTR,3.5
s→aa .

If the decay of the saxion is delayed, the saxion may start
to dominate the universe when H ∼ HSD with

HSD ∼ ms

(
fa

MPl

)4

(31)

and HSD > 
s , in other words,

Brs→aa >
1

64π

(
ms

fa

)2 (
MPl

fa

)4

. (32)

However, comparing to Eq. (21), we find that the allowed
region of parameter space is opened only if

ms � 104 GeV

(
λc

fs

0.12 Mpc

)2 (
fa

fa,0

)4 ( ma

7 keV

)2
.

(33)

In this case, one finds

BrHTR,fs
s→aa �4×10−9

(
λc

fs

0.12 Mpc

)4 (
fa

fa,0

)2 ( ma

7 keV

)4
.

(34)

Now the abundance of the axion from the decay of the
saxion is given by

Ya � 3

2
Brs→aa

Ts

ms

� 7.6 × 10−5×
(

Brs→aa

10−2

)1/2 ( ms

106 GeV

)1/2
(

fa,0

fa

)

(35)

where we assumed that the saxion decays mainly to SM
particles, and used Eq. (20) in the second line. A right
amount of the flux for the 3.5 keV X -ray line is obtained
if

Ya

f 2
a

= 6.9 × 10−5 (7 keV/ma)

f 2
a,0

. (36)

Combined with Eq. (35), the above equation leads to

Brs→aa = BrSD,3.5
s→aa ≡ 13.3

(
g∗(Ts)

200

)1/2 (
104 GeV

ms

)

×
(

fa

fa,0

)6 (
7 keV

ma

)2

. (37)

Using Eq. (33), one finds

BrSD,3.5
s→aa > 13.3

(
g∗(Ts)

200

)1/2 (
0.12 Mpc

λc
fs

)2

×
(

fa

fa,0

)2 (
7 keV

ma

)4

, (38)

which contradicts Eq. (34). Therefore, it is not possible
to get a right amount of photon flux while satisfying the
constraint from structure formation in this case of saxion
domination.

• Low TR
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Inflaton decay might be delayed to a time after axion pro-
duction, i.e., 
I < 
s , which requires

Brs→aa < BrLTR
s→aa ≡ 
s→aa/
I =

(
π2

90
g∗(TR)

)−1/2

× 1

64π

ms

MPl

(
MPl

fa

)2 (
ms

TR

)2

. (39)

In this case, the free-streaming length is given by

λfs ≈ 1

H0

(
H0


s

)2/3 (

I

H0

)1/6 (
m X /2

ma

) (
Teq

T0

)1/4

×
{

1 + 1

2
ln

[(

s

H0

)4/3 (
H0


I

)1/3 (
ma

m X /2

)2 (
T0

Teq

)3/2
]}

(40)

and the constraint from structure formation (Eq. (6)) is
interpreted as

Brs→aa � BrLTR,fs
s→aa

≡
(

λc
fs

0.12 Mpc

)3/2 (
H0

5.33 × 10−38 GeV

)3/2

×
(


I

H0

)1/2 (
ma

ms/2

)3/2 (
T0

Teq

)3/8

×
{

1 + 1

2
ln

[(

s

H0

)4/3 (
H0


I

)1/3

×
(

ma

m X/2

)2 (
T0

Teq

)3/2
]}−3/2

BrLTR
s→aa

= 1.5 × 10−12
(

λc
fs

0.12 Mpc

)3/2 ( ma

7 keV

)3/2

×
(

fa,0

fa

) (
BrLTR

s→aa

)1/2 ; (41)

in the last line we used an approximation, {· · · } = 8.26.
If the saxion starts its coherent oscillation as H � ms , for
fa around of larger than intermediate scale which may
appear naturally in theories beyond the standard model
(for example, SUSY or string theories), the abundance of
the axion when the inflaton decays is given as

Ya(TR) � 1

2
Brs→aa

(
fa

MPl

)2 (
TR

ms

)

� 2.5 × 10−22
( ma

7 keV

)3/2 ( ms

1010 GeV

)1/2

(42)

where in the last line we used Eq. (41). We find that if the
inflaton decayed after axion production, the axion abun-

dance coming from the decay of the saxion would have
turned out to be too small.

4.3 Axion misalignment

The keV-scale mass of the axion is far below the typical
expansion rate of inflation. In addition, the mass of the axion
is generated by the anomaly only after the associated symme-
try is broken. Hence, if the symmetry were broken after infla-
tion, a typical axion misalignment would have been of order
of the axion decay constant. On the other hand, if the symme-
try were broken before or during inflation, the amount of mis-
alignment could have been much smaller than the axion decay
constant. In the following argument, we assume the latter case
to allow a wide range of misaligned axion field values.

• High TR

The energy density of the axion at the onset of oscillation
can be expressed as

ρa,osc = 1

2
m2

aθ2
osc f 2

a (43)

where θosc is the initial misalignment angle, and θosc � 1
is assumed. We assume that the inflaton decayed before
the axion started its oscillation. Then, the present abun-
dance of the misaligned axion is

Ya =
√

3

8

(
π2

90
g∗(Tosc)

)−1/4

θ2
osc

(
fa

MPl

)2 (
MPl

ma

)1/2

.

(44)

This can be consistent with the observed relic density if

θosc � 2 × 10−4
(

fa,0

fa

) (
7 keV

ma

)1/2

(45)

where we used g∗(Tosc) = 200, and the upper-bound sat-
urates the relic density.
A remark is in order here. Considering the primordial
inflation, one notice that θosc � 1 requires that the modu-
lus associated with the axion should be in the broken phase
during inflation so as for a Hubble patch to be occupied
by a particular value θosc. In addition, as already shown
in Eq. (11), for θosc � 10−4, the expansion rate of the
primordial inflation (HI ) should be less than of order
of O(106) GeV in order not to produce too much iso-
curvature perturbation caused by perturbations of θosc.
The recent data of BICEP2 hinted that the Hubble scale
during inflation is HI ∼ 1014 GeV [23]. If it is con-
firmed, axion cannot be the main component of DM,
unless fa � MPl. However, it may be still possible to
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obtain a right amount of the X -ray line flux for fa � fa,0

while satisfying the constraint from iso-curvature pertur-
bation. For example, the photon flux from the decay of
the misaligned axion is proportional to θ2

osc and does not
depend on fa as long as the initial abundance of the axion
is given by Eq. (43). Since r in Eq. (11) is proportional to
f 2
a , one can take fa � fa,0 to push up the bound of HI

to O(1014) GeV hinted by BICEP2 data, while keeping
θosc ∼ 2 × 10−4.

• Low TR

The inflaton might decay at a very late time, and the axion
might start its oscillation when the universe was still dom-
inated by the inflaton. In this case, the axion abundance is
given by

Ya = 1

8

TR

ma
θ2

osc

(
fa

MPl

)2

(46)

where TR is the reheating temperature of the inflaton.
Hence, compared to Eq. (12), θosc is upper-bounded as

θosc � 0.4

(
fa,0

fa

) (
1 GeV

TR

)1/2

. (47)

Note that, since TR � 10 MeV, θosc ∼ O(0.1−1) is
allowed and the saxion can be in the symmetric phase
during inflation although we then may have to worry about
the domain wall problem. The iso-curvature perturbation
bound on HI in Eq. (11) may be satisfied marginally, being
compatible with BICEP2 data, within some errors, for
θosc ∼ O(1) and f I

a ∼ O(1016−17) GeV.

5 Conclusion

We proposed a simple model for the keV-scale axion dark
matter whose decay product into monochromatic photons can
be the source of the recently reported X -ray spectrum at about
3.5 keV. Such a light axion can be produced from the decay
of a heavy particle or from the coherent oscillation of the
axion caused by misalignment. We showed how the keV-sale
axion model is constrained by structure formation and iso-
curvature perturbation, depending on the axion production
mechanisms and the amount of dark matter relic density.

We found that axions produced from the inflaton decay
can saturate the observed relic density of dark matter and
satisfy the constraint from structure formation, provided that
the reheating temperature was not smaller than the inflaton
mass by an order of magnitude and the branching fraction of
the inflaton decay to axions was less than about O(10−4). In
the case of saxion decay, on the other hand, if the saxion was
coherently produced in a broken phase and decayed during
the epoch of radiation domination after inflaton decay, the

axions produced from the saxion decay would be in a strong
tension with the bounds from the Lyman-α forest data. The
tension can be removed if axions produced from the sax-
ion decay is of a subdominant contribution of the dark mat-
ter relic density at present. This, in turn, requires a smaller
axion decay constant to keep the observed 3.5 keV X -ray
line the same. In this case, it is interesting to notice that the
axions can play the role of dark radiation simultaneously,
being compatible with Planck data. If the saxion of coherent
oscillation dominated the universe at a later time, the con-
straint from structure formation would have made it difficult
to accommodate the 3.5 keV X -ray line signal consistently.
Also, if the inflaton decayed at a late time after the decay of
the saxion, the axion relic density could have not saturated
the observed dark matter relic density, without disturbing the
structure formation due to relativistic axions.

We also discussed the axion misalignment for the axion
production. In this case, if the inflaton decayed before the
axion started its oscillation, the misalignment angle θosc

should be about 10−4 to saturate the relic density. On the
other hand, if the reheating temperature of primordial infla-
tion is about 10 MeV, it is possible to have a natural value of
θosc ∼ 0.1. In the case of saxion domination, the parameter
space of the misaligned axion is more constrained, due to the
axions produced from the saxion decay.
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