36 research outputs found

    Universal Stress Proteins Contribute Edwardsiella ictaluri Virulence in Catfish

    Get PDF
    Edwardsiella ictaluri is an intracellular Gram-negative facultative pathogen causing enteric septicemia of catfish (ESC), a common disease resulting in substantial economic losses in the U.S. catfish industry. Previously, we demonstrated that several universal stress proteins (USPs) are highly expressed under in vitro and in vivo stress conditions, indicating their importance for E. ictaluri survival. However, the roles of these USPs in E. ictaluri virulence is not known yet. In this work, 10 usp genes of E. ictaluri were in-frame deleted and characterized in vitro and in vivo. Results show that all USP mutants were sensitive to acidic condition (pH 5.5), and EiΔusp05 and EiΔusp08 were very sensitive to oxidative stress (0.1% H2O2). Virulence studies indicated that EiΔusp05, EiΔusp07, EiΔusp08, EiΔusp09, EiΔusp10, and EiΔusp13 were attenuated significantly compared to E. ictaluri wild-type (EiWT; 20, 45, 20, 20, 55, and 10% vs. 74.1% mortality, respectively). Efficacy experiments showed that vaccination of catfish fingerlings with EiΔusp05, EiΔusp07, EiΔusp08, EiΔusp09, EiΔusp10, and EiΔusp13 provided complete protection against EiWT compared to sham-vaccinated fish (0% vs. 58.33% mortality). Our results support that USPs contribute E. ictaluri virulence in catfish

    Taxonomic and Functional Metagenomic Profile of Sediment From a Commercial Catfish Pond in Mississippi

    Get PDF
    Metagenomic analyses of microbial communities from aquatic sediments are relatively few, and there are no reported metagenomic studies on sediment from inland ponds used for aquaculture. Catfish ponds in the southeastern U.S. are eutrophic systems. They are fertilized to enhance algae growth and encourage natural food production, and catfish are fed with commercial feed from spring to fall. As result, catfish pond sediment (CPS) contains a very dense, diverse microbial community that has significant effects on the physiochemical parameters of pond dynamics. Here we conducted an in-depth metagenomic analysis of the taxonomic and metabolic capabilities of a catfish pond sediment microbiome from a southeastern U.S. aquaculture farm in Mississippi using Illumina next-generation sequencing. A total of 3.3 Gbp of sequence was obtained, 25,491,518 of which encoded predicted protein features. The pond sediment was dominated by Proteobacteria sequences, followed by Bacteroidetes, Firmicutes, Chloroflexi, and Actinobacteria. Enzyme pathways for methane metabolism/methanogenesis, denitrification, and sulfate reduction appeared nearly complete in the pond sediment metagenome profile. In particular, a large number of Deltaproteobacteria sequences and genes encoding anaerobic functional enzymes were found. This is the first study to characterize a catfish pond sediment microbiome, and it is expected to be useful for characterizing specific changes in microbial flora in response to production practices. It will also provide insight into the taxonomic diversity and metabolic capabilities of microbial communities in aquaculture. Furthermore, comparison with other environments (i.e., river and marine sediments) will reveal habitat-specific characteristics and adaptations caused by differences in nutrients, vegetation, and environmental stresses

    APOE Promoter Polymorphism-219T/G is an Effect Modifier of the Influence of APOE ε4 on Alzheimer's Disease Risk in a Multiracial Sample

    Get PDF
    Variants in the APOE gene region may explain ethnic differences in the association of Alzheimer's disease (AD) with ε4. Ethnic differences in allele frequencies for three APOE region SNPs (single nucleotide polymorphisms) were identified and tested for association in 19,398 East Asians (EastA), including Koreans and Japanese, 15,836 European ancestry (EuroA) individuals, and 4985 African Americans, and with brain imaging measures of cortical atrophy in sub-samples of Koreans and EuroAs. Among ε4/ε4 individuals, AD risk increased substantially in a dose-dependent manner with the number of APOE promoter SNP rs405509 T alleles in EastAs (TT: OR (odds ratio) = 27.02, p = 8.80 × 10-94; GT: OR = 15.87, p = 2.62 × 10-9) and EuroAs (TT: OR = 18.13, p = 2.69 × 10-108; GT: OR = 12.63, p = 3.44 × 10-64), and rs405509-T homozygotes had a younger onset and more severe cortical atrophy than those with G-allele. Functional experiments using APOE promoter fragments demonstrated that TT lowered APOE expression in human brain and serum. The modifying effect of rs405509 genotype explained much of the ethnic variability in the AD/ε4 association, and increasing APOE expression might lower AD risk among ε4 homozygotes

    Outer Membrane Vesicles as a Candidate Vaccine against Edwardsiellosis

    Get PDF
    Infection with Edwardsiella tarda, a Gram-negative bacterium, causes high morbidity and mortality in both marine and freshwater fish. Outer membrane vesicles (OMVs) released from Gram-negative bacteria are known to play important roles in bacterial pathogenesis and host immune responses, but no such roles for E. tarda OMVs have yet been described. In the present study, we investigated the proteomic composition of OMVs and the immunostimulatory effect of OMVs in a natural host, as well as the efficacy of OMVs when used as a vaccine against E. tarda infection. A total of 74 proteins, from diverse subcellular fractions, were identified in OMVs. These included a variety of important virulence factors, such as hemolysin, OmpA, porin, GAPDH, EseB, EseC, EseD, EvpC, EvpP, lipoprotein, flagellin, and fimbrial protein. When OMVs were administrated to olive flounder, significant induction of mRNAs encoding IL-1β, IL-6, TNFα, and IFNγ was observed, compared with the levels seen in fish injected with formalin-killed E. tarda. In a vaccine trial, olive flounder given OMVs were more effectively protected (p<0.0001) than were control fish. Investigation of OMVs may be useful not only for understanding the pathogenesis of E. tarda but also in development of an effective vaccine against edwardsiellosis

    Comparative Genomic Characterization of Three Streptococcus parauberis Strains in Fish Pathogen, as Assessed by Wide-Genome Analyses

    Get PDF
    Streptococcus parauberis, which is the main causative agent of streptococcosis among olive flounder (Paralichthys olivaceus) in northeast Asia, can be distinctly divided into two groups (type I and type II) by an agglutination test. Here, the whole genome sequences of two Japanese strains (KRS-02083 and KRS-02109) were determined and compared with the previously determined genome of a Korean strain (KCTC 11537). The genomes of S. parauberis are intermediate in size and have lower GC contents than those of other streptococci. We annotated 2,236 and 2,048 genes in KRS-02083 and KRS-02109, respectively. Our results revealed that the three S. parauberis strains contain different genomic insertions and deletions. In particular, the genomes of Korean and Japanese strains encode different factors for sugar utilization; the former encodes the phosphotransferase system (PTS) for sorbose, whereas the latter encodes proteins for lactose hydrolysis, respectively. And the KRS-02109 strain, specifically, was the type II strain found to be able to resist phage infection through the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system and which might contribute valuably to serologically distribution. Thus, our genome-wide association study shows that polymorphisms can affect pathogen responses, providing insight into biological/biochemical pathways and phylogenetic diversity

    Pragmatic Strategy for Fecal Specimen Storage and the Corresponding Test Methods for Clostridioides difficile Diagnosis

    No full text
    The quality of fecal specimens is one of the factors responsible for successful Clostridioides difficile infection (CDI) diagnosis. The quality depends largely on the storage conditions, including the temperature and time period. In this study, we organized the outputs of previous studies, filled experimental gaps in the knowledge of storage conditions, and introduced a pragmatic strategy for fecal storage for CDI diagnosis. A 5-step pathway was adopted to develop the fecal specimen storage strategy as follows: step 1, bibliomic analysis; step 2, experimental gap-filling; step 3, comparative evaluation; step 4, strategy development; step 5, internal review. Step 1 identified eight articles providing experimental information on the effects of fecal specimen storage conditions on the effectiveness of C. difficile detection methods. Step 2 provided additional quantitative data on C. difficile vegetative and spore cell viability and DNA stability. All previous and current results were compared (step 3). In step 4, fir general and nine special strategies were developed, followed by an internal review of the overall approaches (step 5). It is recommended to separate fecal samples into aliquots before testing and storing them. It is particularly recommended that fecal specimen samples be stored for CDI diagnosis at 4 °C for up to 60 days for all test methods

    Microbiological Survey of 47 Permanent Makeup Inks Available in the United States

    No full text
    In two previous surveys, the U.S. Food and Drug Administration (FDA) identified microbial contamination in 53 of 112 (47%) unopened tattoo inks and tattoo-ink-related products (e.g., diluents) from 15 manufacturers in the U.S. In this study, we primarily focused our microbiological survey on permanent makeup (PMU) inks. We conducted a survey of 47 unopened PMU inks from nine manufacturers and a comparative species-centric co-occurrence network (SCN) analysis using the survey results. Aerobic plate count and enrichment culture methods using the FDA&rsquo;s Bacteriological Analytical Manual (BAM) Chapter 23 revealed that 9 (19%) inks out of 47, from five manufacturers, were contaminated with microorganisms. The level of microbial contamination was less than 250 CFU/g in eight inks and 980 CFU/g in one ink. We identified 26 bacteria that belong to nine genera and 21 species, including some clinically relevant species, such as Alloiococcus otitis, Dermacoccus nishinomiyaensis, Kocuria rosea, and Pasteurella canis. Among the identified microorganisms, the SCN analysis revealed dominance and a strong co-occurrence relation of spore-forming extreme environment survivors, Bacillus spp., with close phylogenetic/phenotypic relationships. These results provide practical insights into the possible microbial contamination factors and positive selection pressure of PMU inks

    Microbiological Survey of 47 Permanent Makeup Inks Available in the United States

    No full text
    In two previous surveys, the U.S. Food and Drug Administration (FDA) identified microbial contamination in 53 of 112 (47%) unopened tattoo inks and tattoo-ink-related products (e.g., diluents) from 15 manufacturers in the U.S. In this study, we primarily focused our microbiological survey on permanent makeup (PMU) inks. We conducted a survey of 47 unopened PMU inks from nine manufacturers and a comparative species-centric co-occurrence network (SCN) analysis using the survey results. Aerobic plate count and enrichment culture methods using the FDA’s Bacteriological Analytical Manual (BAM) Chapter 23 revealed that 9 (19%) inks out of 47, from five manufacturers, were contaminated with microorganisms. The level of microbial contamination was less than 250 CFU/g in eight inks and 980 CFU/g in one ink. We identified 26 bacteria that belong to nine genera and 21 species, including some clinically relevant species, such as Alloiococcus otitis, Dermacoccus nishinomiyaensis, Kocuria rosea, and Pasteurella canis. Among the identified microorganisms, the SCN analysis revealed dominance and a strong co-occurrence relation of spore-forming extreme environment survivors, Bacillus spp., with close phylogenetic/phenotypic relationships. These results provide practical insights into the possible microbial contamination factors and positive selection pressure of PMU inks
    corecore