13,079 research outputs found

    Association of early atherosclerosis with vascular wall shear stress in hypercholesterolemic zebrafish

    Get PDF
    Although atherosclerosis is a multifactorial disease, the role of hemodynamic information has become more important. Low and oscillating wall shear stress (WSS) that changes its direction is associated with the early stage of atherosclerosis. Several in vitro and in vivo models were proposed to reveal the relation between the WSS and the early atherosclerosis. However, these models possess technical limitations in mimicking real physiological conditions and monitoring the developmental course of the early atherosclerosis. In this study, a hypercholesterolaemic zebrafish model is proposed as a novel experimental model to resolve these limitations. Zebrafish larvae are optically transparent, which enables temporal observation of pathological variations under in vivo condition. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro particle image velocimetry (PIV) technique, and spatial distribution of lipid deposition inside the model was quantitatively investigated after feeding high cholesterol diet for 10 days. Lipids were mainly deposited in blood vessel of low WSS. The oscillating WSS was not induced by the blood flows in zebrafish models. The present hypercholesterolaemic zebrafish would be used as a potentially useful model for in vivo study about the effects of low WSS in the early atherosclerosis.1144Ysciescopu

    Charge ordering in quarter-filled ladder systems coupled to the lattice

    Full text link
    We investigate charge ordering in the presence of electron-phonon coupling for quarter-filled ladder systems by using Exact Diagonalization. As an example we consider NaV2O5 using model parameters obtained from first-principles band-structure calculations. The relevant Holstein coupling to the lattice considerably reduces the critical value of the nearest-neighbor Coulomb repulsion at which formation of the zig-zag charge-ordered state occurs, which is then accompanied by a static lattice distortion. Energy and length of a kink-like excitation on the background of the distorted lattice are calculated. Spin and charge spectra on ladders with and without static distortion are obtained, and the charge gap and the effective spin-spin exchange parameter J are extracted. J agrees well with experimental results. Analysis of the dynamical Holstein model, restricted to a small number of phonons, shows that low frequency lattice vibrations increase the charge order, accompanied by dynamically produced zig-zag lattice distortions.Comment: 11 pages, 17 figures, revised version as to appear in Phys. Rev.

    Tuning electronic structures via epitaxial strain in Sr2IrO4 thin films

    Get PDF
    We have synthesized epitaxial Sr2IrO4 thin-films on various substrates and studied their electronic structures as a function of lattice-strains. Under tensile (compressive) strains, increased (decreased) Ir-O-Ir bond-angles are expected to result in increased (decreased) electronic bandwidths. However, we have observed that the two optical absorption peaks near 0.5 eV and 1.0 eV are shifted to higher (lower) energies under tensile (compressive) strains, indicating that the electronic-correlation energy is also affected by in-plane lattice-strains. The effective tuning of electronic structures under lattice-modification provides an important insight into the physics driven by the coexisting strong spin-orbit coupling and electronic correlation.Comment: 9 pages, 5 figures, 1 tabl

    Charge Fluctuations in Geometrically Frustrated Charge Ordering System

    Full text link
    Effects of geometrical frustration in low-dimensional charge ordering systems are theoretically studied, mainly focusing on dynamical properties. We treat extended Hubbard models at quarter-filling, where the frustration arises from competing charge ordered patterns favored by different intersite Coulomb interactions, which are effective models for various charge transfer-type molecular conductors and transition metal oxides. Two different lattice structures are considered: (a) one-dimensional chain with intersite Coulomb interaction of nearest neighbor V_1 and that of next-nearest neighbor V_2, and (b) two-dimensional square lattice with V_1 along the squares and V_2 along one of the diagonals. From previous studies, charge ordered insulating states are known to be unstable in the frustrated region, i.e., V_1 \simeq 2V_2 for case (a) and V_1 \simeq V_2 for case (b), resulting in a robust metallic phase even when the interaction strenghs are strong. By applying the Lanczos exact diagonalization to finite-size clusters, we have found that fluctuations of different charge order patterns exist in the frustration-induced metallic phase, showing up as characteristic low energy modes in dynamical correlation functions. Comparison of such features between the two models are discussed, whose difference will be ascribed to the dimensionality effect. We also point out incommensurate correlation in the charge sector due to the frustration, found in one-dimensional clusters.Comment: 8 pages, 9 figure

    Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys

    Full text link
    We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey conditions, and fiducial model. We find results that are competitive with the performance of future supernovae Ia surveys. We conclude that redshift surveys offer a promising independent route to the measurement of dark energy.Comment: submitted to ApJ, 24 pages, LaTe

    Tunable magnetic interaction at the atomic scale in oxide heterostructures

    Full text link
    We report on a systematic study of a number of structurally identical but chemically distinct transition metal oxides in order to determine how the material-specific properties such as the composition and the strain affect the properties at the interface of heterostructures. Our study considers a series of structures containing two layers of ferromagnetic SrRuO3, with antiferromagnetic insulating manganites sandwiched in between. The results demonstrate how to control the strength and relative orientation of interfacial ferromagnetism in correlated electron materials by means of valence state variation and substrate-induced strain, respectively

    From Compact to String—The Role of Secondary and Tertiary Structure in Charge-Induced Unzipping of Gas-Phase Proteins

    Get PDF
    In the gas phase, protein ions can adopt a broad range of structures, which have been investigated extensively in the past using ion mobility-mass spectrometry (IM-MS)-based methods. Compact ions with low number of charges undergo a Coulomb-driven transition to partially folded species when the charge increases, and finally form extended structures with presumably little or no defined structure when the charge state is high. However, with respect to the secondary structure, IM-MS methods are essentially blind. Infrared (IR) spectroscopy, on the other hand, is sensitive to such structural details and there is increasing evidence that helices as well as β-sheet-like structures can exist in the gas phase, especially for ions in low charge states. Very recently, we showed that also the fully extended form of highly charged protein ions can adopt a distinct type of secondary structure that features a characteristic C5-type hydrogen bond pattern. Here we use a combination of IM-MS and IR spectroscopy to further investigate the influence of the initial, native conformation on the formation of these structures. Our results indicate that when intramolecular Coulomb-repulsion is large enough to overcome the stabilization energies of the genuine secondary structure, all proteins, regardless of their sequence or native conformation, form C5-type hydrogen bond structures. Furthermore, our results suggest that in highly charged proteins the positioning of charges along the sequence is only marginally influenced by the basicity of individual residues

    Finite-temperature phase transitions in quasi-one-dimensional molecular conductors

    Full text link
    Phase transitions in 1/4-filled quasi-one-dimensional molecular conductors are studied theoretically on the basis of extended Hubbard chains including electron-lattice interactions coupled by interchain Coulomb repulsion. We apply the numerical quantum transfer-matrix method to an effective one-dimensional model, treating the interchain term within mean-field approximation. Finite-temperature properties are investigated for the charge ordering, the "dimer Mott" transition (bond dimerization), and the spin-Peierls transition (bond tetramerization). A coexistent state of charge order and bond dimerization exhibiting dielectricity is predicted in a certain parameter range, even when intrinsic dimerization is absent.Comment: to be published in J. Phys. Soc. Jpn., Vol. 76 (2007) No. 1 (5 pages, 4 figures); typo correcte

    Forage Yield and Nutritive Value of Spring Oats for Various Cultivars and Planting Dates at the Middle Mountain Area

    Get PDF
    The experiment was carried out to determine the optimum cultivars and effects of planting date on growth, forage yield and nutritive value of spring sown oats (Avena sativa L.) at the middle mountainous area, Namwon, NLRI, Korea, 1998. The cultivars used in this study was Cayuse, Swan, Foothill, Cashel, Martlock and Winjardie, and the planting dates were 9, 14, 19, 24 and 29 March, and all the forages were harvested on 9 June. Swan among spring oats was the earliest heading type (21 May), and then Martlock (25 May), Winjardie (27 May), and Foothill was the latest (14 June). Dry matter yield was not significantly different (P\u3e 0.05) among six spring oats, except Martlock. Nutritive value was higher in late-maturing cutivars than those of early-maturing types. As the planting date was earlier, the heading date was shortened, and the forage yield was tended to increase. In conclusion, spring oats can be successfully produced by seeding of early March using early-maturing cultivars for more forage production, hay-making during late May, and planting of subsequent forages at the mountainous area in Korea
    corecore