325 research outputs found

    Cationic microporous polymer networks by polymerisation of weakly coordinating cations with CO2-storage ability

    Get PDF
    Microporous organic polymer networks with weakly coordinating cations in their backbone have been synthesised by metal catalysed C–C bond forming reactions. A functionalised tetraphenylphosphonium ion was synthesised and successfully used as a tecton in a co-polymerisation with tetrakis(4-bromophenyl) methane using nickel catalysed Yamamoto coupling and with triethynylbenzene in a palladium catalysed Songashira–Hagihara reaction. The microporous materials showed an apparent BET surface area of 1455 m2 g−1 and 540 m2 g−1, respectively. The Yamamoto product provide a CO2 uptake of 2.49 mmol g−1 at 273 K and 1 bar. After ion exchange with chloride CO2 uptake is further increased to 2.85 mmol g−1.EC/FP7/278593/EU/Organic Zeolites/ORGZEOEC/FP7/300534/EU/Functional Microporous Organic Polymers/FunMOP

    Metal-Organic Frameworks in Germany: from Synthesis to Function

    Full text link
    Metal-organic frameworks (MOFs) are constructed from a combination of inorganic and organic units to produce materials which display high porosity, among other unique and exciting properties. MOFs have shown promise in many wide-ranging applications, such as catalysis and gas separations. In this review, we highlight MOF research conducted by Germany-based research groups. Specifically, we feature approaches for the synthesis of new MOFs, high-throughput MOF production, advanced characterization methods and examples of advanced functions and properties

    New insights into solvent-induced structural changes of C-13 labelled metal-organic frameworks by solid state NMR

    Get PDF
    Selective C-13-labelling of carboxylate carbons in the linker molecules of flexible metal-organic frameworks (MOFs) makes solid-state NMR spectroscopy very powerful to investigate solvent-induced local structural changes as demonstrated by C-13 and H-1 NMR spectroscopy on the pillared layer MOF DUT-8(Ni). Selective identification of polar solvent-node interactions becomes feasible

    Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks

    Full text link
    [EN] Various defect-engineered Zr-trimesate MOF-808 compounds (DE-MOF-808) have been prepared by mixing the tricarboxylate ligands with dicarboxylate ligands; viz. isophthalate, pyridine-3,5-dicarboxylate, 5-hydroxy-isophthalate, or 5-amino-isophthalate. The resulting mixed-ligand compounds, MOF-808-X (X = IP, Pydc, OH or NH2) were all found to be highly crystalline and isostructural to the unmodified MOF-808. Pristine MOF-808 showed better catalytic performance than a UiO-66 reference compound for the Meerwein-Ponndorf-Verley (MPV) reduction of carbonyl compounds. This was attributed to a higher availability of coordinatively unsaturated Zr4+ sites (cus) in MOF-808 upon removal of formate ions. Meanwhile, cus in UiO-66 are only located at defect sites and are thus much less abundant. Further improvement of the catalytic activity of defect-engineered MOF-808-IP and MOF-808-Pydc was observed, which may be related with the occurrence of less crowded Zr4+ sites in DE-MOF-808. The wider pore structure of MOF-808 with respect to UiO-66 compounds translates into a sharp improvement of the activity for the MPV reduction of bulky substrates, as shown for estrone reduction to estradiol. Interestingly, MOF-808 produces a notable diastereoselectivity towards the elusive 17--hydroxy estradiol.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 641887 (project acronym: DEFNET). Financial support from the Spanish Ministry of Economy and Competitiveness (program Severo Ochoa SEV20120267), the Spanish Ministry of Science and Innovation (project MAT2014-52085-C2-1-P), and the German Research Foundation (project KA 1698/19-1) is also gratefully acknowledged. The Microscopy Service of the Universitat Politecnica de Valencia are gratefully acknowledged for the SEM images.Mautschke, H.; Drache, F.; Senkovska, I.; Kaskel, S.; Llabrés I Xamena, FX. (2018). Catalytic properties of pristine and defect-engineered Zr-MOF-808 metal organic frameworks. Catalysis Science & Technology. 8(14):3610-3616. https://doi.org/10.1039/c8cy00742jS3610361681

    Flexible metal–organic frameworks

    Get PDF
    Advances in flexible and functional metal–organic frameworks (MOFs), also called soft porous crystals, are reviewed by covering the literature of the five years period 2009–2013 with reference to the early pertinent work since the late 1990s. Flexible MOFs combine the crystalline order of the underlying coordination network with cooperative structural transformability. These materials can respond to physical and chemical stimuli of various kinds in a tunable fashion by molecular design, which does not exist for other known solid-state materials. Among the fascinating properties are so-called breathing and swelling phenomena as a function of host–guest interactions. Phase transitions are triggered by guest adsorption/desorption, photochemical, thermal, and mechanical stimuli. Other important flexible properties of MOFs, such as linker rotation and sub-net sliding, which are not necessarily accompanied by crystallographic phase transitions, are briefly mentioned as well. Emphasis is given on reviewing the recent progress in application of in situ characterization techniques and the results of theoretical approaches to characterize and understand the breathing mechanisms and phase transitions. The flexible MOF systems, which are discussed, are categorized by the type of metal-nodes involved and how their coordination chemistry with the linker molecules controls the framework dynamics. Aspects of tailoring the flexible and responsive properties by the mixed component solid-solution concept are included, and as well examples of possible applications of flexible metal–organic frameworks for separation, catalysis, sensing, and biomedicine

    The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal-organic framework DUT-98

    Get PDF
    In this contribution we analyze the influence of adsorption cycling, crystal size, and temperature on the switching behavior of the flexible Zr-based metal-organic framework DUT-98. We observe a shift in the gate-opening pressure upon cycling of adsorption experiments for micrometer-sized crystals and assign this to a fragmentation of the crystals. In a series of samples, the average crystal size of DUT-98 crystals was varied from 120 mu m to 50 nm and the obtained solids were characterized by X-ray diffraction, infrared spectroscopy, as well as scanning and transmission electron microscopy. We analyzed the adsorption behavior by nitrogen and water adsorption at 77 K and 298 K, respectively, and show that adsorption-induced flexibility is only observed for micrometer-sized crystals. Nanometer-sized crystals were found to exhibit reversible type I adsorption behavior upon adsorption of nitrogen and exhibit a crystal-size-dependent steep water uptake of up to 20 mmol g(-1) at 0.5 p/p(0) with potential for water harvesting and heat pump applications. We furthermore investigate the temperature-induced structural transition by in situ powder X-ray diffraction. At temperatures beyond 110 degrees C, the open-pore state of the nanometer-sized DUT-98 crystals is found to irreversibly transform to a closed-pore state. The connection of crystal fragmentation upon adsorption cycling and the crystal size dependence of the adsorption-induced flexibility is an important finding for evaluation of these materials in future adsorption-based applications. This work thus extends the limited amount of studies on crystal size effects in flexible MOFs and hopefully motivates further investigations in this field.</p

    Impact of Defects and Crystal Size on Negative Gas Adsorption in DUT-49 Analyzed by in Situ <sup>129</sup>Xe NMR Spectroscopy

    Get PDF
    The origin of crystal-size-dependent adsorption behavior of flexible metal-organic frameworks is increasingly studied. In this contribution, we probe the solid-fluid interactions of DUT-49 crystals of different size by in situ 129Xe NMR spectroscopy at 200 K. With decreasing size of the crystals, the average solid-fluid interactions are found to decrease reflected by a decrease in chemical shift of adsorbed xenon from 230 to 200 ppm, explaining the lack of adsorption-induced transitions for smaller crystals. However, recent studies propose that these results can also originate from the presence of lattice defects. To investigate the influence of defects on the adsorption behavior of DUT-49, we synthesized a series of samples with tailored defect concentrations and characterized them by in situ 129Xe NMR. In comparison to the results obtained for crystals with different size, we find pronounced changes of the adsorption behavior and influence of the chemical shift only for very high concentrations of defects, which further emphasizes the important role of particle size phenomena

    A new metal–organic framework with ultra-high surface area

    Get PDF
    A new mesoporous MOF, Zn4O(bpdc)(btctb)4/3 (DUT-32), containing linear ditopic (bpdc2−; 4,4′-biphenylenedicarboxylic acid) and tritopic (btctb3−; 4,4′,4′′-[benzene-1,3,5-triyltris(carbonylimino)]tris-benzoate) linkers, was synthesised. The highly porous solid has a total pore volume of 3.16 cm3 g−1 and a specific BET surface area of 6411 m2 g−1, adding this compound to the top ten porous materials with the highest BET surface area
    • …
    corecore