11 research outputs found

    The GEO600 gravitational wave detector: pulsar prospects

    Get PDF
    The GEO600 laser-interferometric gravitational wave detector near Hannover, Germany, is one of six such interferometers now close to operation worldwide. The UK/German GEO collaboration uses advanced technologies, including monolithic silica suspensions and signal recycling, to deliver a sensitivity comparable with much larger detectors in their initial configurations. Here we review the design and performance of GEO600 and consider the prospects for a direct detection of continuous gravitational waves from spinning neutron stars

    The GEO600 gravitational wave detector: pulsar prospects

    No full text
    The GEO600 laser-interferometric gravitational wave detector near Hannover, Germany, is one of six such interferometers now close to operation worldwide. The UK/German GEO collaboration uses advanced technologies, including monolithic silica suspensions and signal recycling, to deliver a sensitivity comparable with much larger detectors in their initial configurations. Here we review the design and performance of GEO600 and consider the prospects for a direct detection of continuous gravitational waves from spinning neutron stars

    The GEO 600 gravitational wave detector

    Get PDF
    The GEO 600 laser interferometer with 600 m armlength is part of a worldwide network of gravitational wave detectors. Due to the use of advanced technologies like multiple pendulum suspensions with a monolithic last stage and signal recycling, the anticipated sensitivity of GEO 600 is close to the initial sensitivity of detectors with several kilometres armlength. This paper describes the subsystems of GEO 600, the status of the detector by September 2001 and the plans towards the first science run

    The GEO 600 gravitational wave detector: pulsar prospects

    No full text
    The GEO600 laser-interferometric gravitational wave detector near Hannover, Germany, is one of six such interferometers now close to operation worldwide. The UK/German GEO collaboration uses advanced technologies, including monolithic silica suspensions and signal recycling, to deliver a sensitivity comparable with much larger detectors in their initial configurations. Here we review the design and performance of GEO600 and consider the prospects for a direct detection of continuous gravitational waves from spinning neutron stars

    Xylan structure, microbial xylanases, and their mode of action

    No full text

    Vorapaxar in the secondary prevention of atherothrombotic events

    Get PDF
    Item does not contain fulltextBACKGROUND: Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS: We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS: At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS: Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.)

    Peripheral Immunity, Immunoaging and Neuroinflammation in Parkinson’s Disease

    No full text
    corecore