30 research outputs found

    Regridding Uncertainty for Statistical Downscaling of Solar Radiation

    Full text link
    Initial steps in statistical downscaling involve being able to compare observed data from regional climate models (RCMs). This prediction requires (1) regridding RCM output from their native grids and at differing spatial resolutions to a common grid in order to be comparable to observed data and (2) bias correcting RCM data, via quantile mapping, for example, for future modeling and analysis. The uncertainty associated with (1) is not always considered for downstream operations in (2). This work examines this uncertainty, which is not often made available to the user of a regridded data product. This analysis is applied to RCM solar radiation data from the NA-CORDEX data archive and observed data from the National Solar Radiation Database housed at the National Renewable Energy Lab. A case study of the mentioned methods over California is presented.Comment: 16 pages, 5 figures, submitted to: Advances in Statistical Climatology, Meteorology and Oceanograph

    Coupling sky images with radiative transfer models: a new method to estimate cloud optical depth

    Get PDF
    A method for retrieving cloud optical depth (τc) using a UCSD developed ground-based sky imager (USI) is presented. The radiance red–blue ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a radiative transfer model (RTM). From these images the basic parameters affecting the radiance and red–blue ratio (RBR) of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλτc, θ0, ϑs, ϑz, and RBRτc, θ0, ϑs, ϑz are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeasϑs, ϑz, in addition to RBRmeasϑs, ϑz, to obtain a unique solution for τc. The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement (ARM) program site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min et al. (2003) method for overcast skies. τc values ranged from 0 to 80 with values over 80, being capped and registered as 80. A τc RMSE of 2.5 between the Min et al. (2003) method and the USI are observed. The MWR and USI  have an RMSE of 2.2, which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms

    Towards an Improved High Resolution Global Long-Term Solar Resource Database

    Get PDF
    This paper presents an overview of an ongoing project to develop and deliver a solar mapping processing system to the National Renewable Energy Laboratory (NREL) using the data sets that are planned for production at the National Climatic Data Center (NCDC). NCDC will be producing a long-term radiance and cloud property data set covering the globe every three hours at an approximate resolution of 10 x 10 km. NASA, the originators of the Surface meteorology and Solar Energy web portal are collaborating with SUNY-Albany to develop the production system and solar algorithms. The initial result will be a global long-term solar resource data set spanning over 25 years. The ultimate goal of the project is to also deliver this data set and production system to NREL for continual production. The project will also assess the impact of providing these new data to several NREL solar decision support tools

    Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method

    Get PDF
    Spatial and temporal soil moisture dynamics are critically needed to improve the parameterization for hydrological and meteorological modeling processes. This study evaluates the statistical spatial structure of large-scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial in calibration and validation of large-scale satellite based data assimilation systems. Spatial analysis using geostatistical approaches was used to validate modeled soil moisture by the Agriculture Meteorological (AGRMET) model using in situ measurements of soil moisture from a state-wide environmental monitoring network (Oklahoma Mesonet). The results show that AGRMET data produces larger spatial decorrelation compared to in situ based soil moisture data. The precipitation storms drive the soil moisture spatial structures at large scale, found smaller decorrelation length after precipitation. This study also evaluates the geostatistical approach for mitigation for quality control issues within in situ soil moisture network to estimates at soil moisture at unsampled stations

    Solar Irradiance Ramp Forecasting Based on All-Sky Imagers

    Get PDF
    Solar forecasting constitutes a critical tool for operating, producing and storing generated power from solar farms. In the framework of the International Energy Agency’s Photovoltaic Power Systems Program Task 16, the solar irradiance nowcast algorithms, based on five all-sky imagers (ASIs), are used to investigate the feasibility of ASIs to foresee ramp events. ASIs 1–2 and ASIs 3–5 can capture the true ramp events by 26.0–51.0% and 49.0–92.0% of the cases, respectively. ASIs 1–2 provided the lowest

    AATTENUATION-The Atmospheric Attenuation Model for CSP Tower Plants: A Look-Up Table for Operational Implementation

    Get PDF
    Attenuation of solar radiation between the receiver and the heliostat field in concentrated solar power (CSP) tower plants can reduce the overall system performance significantly. The attenuation varies strongly with time and the average attenuation at different sites might also vary strongly from each other. If no site specific attenuation data is available, the optimal plant design cannot be determined and rough estimations of the attenuation effect are required leading to high uncertainties of yield analysis calculations. The attenuation is caused mainly by water vapor content and aerosol particles in the lower atmospheric layer above ground. Although several on-site measurement systems have been developed during recent years, attenuation data sets are usually not available to be included during the plant project development. An Atmospheric Attenuation (AATTENUATION) model to derive the atmospheric transmittance between a heliostat and receiver on the basis of common direct normal irradiance (DNI), temperature, relative humidity, and barometric pressure measurements was developed and validated by the authors earlier. The model allows the accurate estimation of attenuation for sites with low attenuation and gives an estimation of the attenuation for less clear sites. However, the site-dependent coefficients of the ATTENUATION model had to be developed individually for each site of interest, which required time-consuming radiative transfer simulations, considering the exact location and altitude, as well as the pre-dominant aerosol type at the location. This strongly limited the application of the model despite its typically available input data. In this manuscript, a look-up table (LUT) is presented which enables the application of the AATTENUATION model at the site of interest without the necessity to perform the according complex radiative transfer calculations for each site individually. This enables the application of the AATTENUATION model for virtually all resource assessments for tower plants and in an operational mode in real time within plant monitoring systems around the world. The LUT also facilitates the generation of solar attenuation maps on the basis of long-term meteorological data sets which can be considered during resource assessment for CSP tower plant projects. The LUTs are provided together with this manuscript as supplementary files. The LUT for the AATTENUATION model was developed for a solar zenith angle (SZA) grid of 1â—¦, an altitude grid of 100 m, 7 different standard aerosol types and the standard AFGL atmospheres for mid-latitudes and the tropics. The LUT was tested against the original version of the AATTENUATION model at 4 sites in Morocco and Spain, and it was found that the additional uncertainty introduced by the application of the LUT is negligible. With the information of latitude, longitude, altitude above mean sea level, DNI, relative humidity (RH), ambient temperature (Tair), and barometric pressure (bp), the attenuation can be now derived easily for each site of interest

    Non-parametric Methods for Soil Moisture Retrieval from Satellite Remote Sensing Data

    Get PDF
    Abstract: Satellite remote sensing observations have the potential for efficient and reliable mapping of spatial soil moisture distributions. However, soil moisture retrievals from active microwave remote sensing data are typically complex due to inherent difficulty in characterizing interactions among land surface parameters that contribute to the retrieval process. Therefore, adequate physical mathematical descriptions of microwave backscatter interaction with parameters such as land cover, vegetation density, and soil characteristics are not readily available. In such condition, non-parametric models could be used as possible alternative for better understanding the impact of variables in the retrieval process and relating it in the absence of exact formulation. In this study, non-parametric methods such as neural networks, fuzzy logic are used to retrieve soil moisture from active microwave remote sensing data. The inclusion of soil characteristics and Normalized Difference Vegetation Index (NDVI) derived from infrared and visible measurement, have significantly improved soil moisture retrievals and reduced root mean square error (RMSE

    The Impact of Stochastic Perturbations in Physics Variables for Predicting Surface Solar Irradiance

    No full text
    We present a probabilistic framework tailored for solar energy applications referred to as the Weather Research and Forecasting-Solar ensemble prediction system (WRF-Solar EPS). WRF-Solar EPS has been developed by introducing stochastic perturbations into the most relevant physical variables for solar irradiance predictions. In this study, we comprehensively discuss the impact of the stochastic perturbations of WRF-Solar EPS on solar irradiance forecasting compared to a deterministic WRF-Solar prediction (WRF-Solar DET), a stochastic ensemble using the stochastic kinetic energy backscatter scheme (SKEBS), and a WRF-Solar multi-physics ensemble (WRF-Solar PHYS). The performances of the four forecasts are evaluated using irradiance retrievals from the National Solar Radiation Database (NSRDB) over the contiguous United States. We focus on the predictability of the day-ahead solar irradiance forecasts during the year of 2018. The results show that the ensemble forecasts improve the quality of the forecasts, compared to the deterministic prediction system, by accounting for the uncertainty derived by the ensemble members. However, the three ensemble systems are under-dispersive, producing unreliable and overconfident forecasts due to a lack of calibration. In particular, WRF-Solar EPS produces less optically thick clouds than the other forecasts, which explains the larger positive bias in WRF-Solar EPS (31.7 W/m2) than in the other models (22.7–23.6 W/m2). This study confirms that the WRF-Solar EPS reduced the forecast error by 7.5% in terms of the mean absolute error (MAE) compared to WRF-Solar DET, and provides in-depth comparisons of forecast abilities with the conventional scientific probabilistic approaches (i.e., SKEBS and a multi-physics ensemble). Guidelines for improving the performance of WRF-Solar EPS in the future are provided

    The Impact of Stochastic Perturbations in Physics Variables for Predicting Surface Solar Irradiance

    No full text
    We present a probabilistic framework tailored for solar energy applications referred to as the Weather Research and Forecasting-Solar ensemble prediction system (WRF-Solar EPS). WRF-Solar EPS has been developed by introducing stochastic perturbations into the most relevant physical variables for solar irradiance predictions. In this study, we comprehensively discuss the impact of the stochastic perturbations of WRF-Solar EPS on solar irradiance forecasting compared to a deterministic WRF-Solar prediction (WRF-Solar DET), a stochastic ensemble using the stochastic kinetic energy backscatter scheme (SKEBS), and a WRF-Solar multi-physics ensemble (WRF-Solar PHYS). The performances of the four forecasts are evaluated using irradiance retrievals from the National Solar Radiation Database (NSRDB) over the contiguous United States. We focus on the predictability of the day-ahead solar irradiance forecasts during the year of 2018. The results show that the ensemble forecasts improve the quality of the forecasts, compared to the deterministic prediction system, by accounting for the uncertainty derived by the ensemble members. However, the three ensemble systems are under-dispersive, producing unreliable and overconfident forecasts due to a lack of calibration. In particular, WRF-Solar EPS produces less optically thick clouds than the other forecasts, which explains the larger positive bias in WRF-Solar EPS (31.7 W/m2) than in the other models (22.7–23.6 W/m2). This study confirms that the WRF-Solar EPS reduced the forecast error by 7.5% in terms of the mean absolute error (MAE) compared to WRF-Solar DET, and provides in-depth comparisons of forecast abilities with the conventional scientific probabilistic approaches (i.e., SKEBS and a multi-physics ensemble). Guidelines for improving the performance of WRF-Solar EPS in the future are provided
    corecore