204 research outputs found

    Concepts and methods for describing critical phenomena in fluids

    Get PDF
    The predictions of theoretical models for a critical-point phase transistion in fluids, namely the classical equation with third-degree critical isotherm, that with fifth-degree critical isotherm, and the lattice gas, are reviewed. The renormalization group theory of critical phenomena and the hypothesis of universality of critical behavior supported by this theory are discussed as well as the nature of gravity effects and how they affect cricital-region experimentation in fluids. The behavior of the thermodynamic properties and the correlation function is formulated in terms of scaling laws. The predictions of these scaling laws and of the hypothesis of universality of critical behavior are compared with experimental data for one-component fluids and it is indicated how the methods can be extended to describe critical phenomena in fluid mixtures

    Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas

    Full text link
    We explore the phase transitions of the ideal relativistic neutral Bose gas confined in a cubic box, without assuming the thermodynamic limit nor continuous approximation. While the corresponding non-relativistic canonical partition function is essentially a one-variable function depending on a particular combination of temperature and volume, the relativistic canonical partition function is genuinely a two-variable function of them. Based on an exact expression of the canonical partition function, we performed numerical computations for up to hundred thousand particles. We report that if the number of particles is equal to or greater than a critical value, which amounts to 7616, the ideal relativistic neutral Bose gas features a spinodal curve with a critical point. This enables us to depict the phase diagram of the ideal Bose gas. The consequent phase transition is first-order below the critical pressure or second-order at the critical pressure. The exponents corresponding to the singularities are 1/2 and 2/3 respectively. We also verify the recently observed `Widom line' in the supercritical region.Comment: 1+25 pages, 6 B/W figures: Comment on the Widom line added. Minor improvement. Version to appear in `New Journal of Physics

    Critical dynamics of an isothermal compressible non-ideal fluid

    Full text link
    A pure fluid at its critical point shows a dramatic slow-down in its dynamics, due to a divergence of the order-parameter susceptibility and the coefficient of heat transport. Under isothermal conditions, however, sound waves provide the only possible relaxation mechanism for order-parameter fluctuations. Here we study the critical dynamics of an isothermal, compressible non-ideal fluid via scaling arguments and computer simulations of the corresponding fluctuating hydrodynamics equations. We show that, below a critical dimension of 4, the order-parameter dynamics of an isothermal fluid effectively reduces to "model A," characterized by overdamped sound waves and a divergent bulk viscosity. In contrast, the shear viscosity remains finite above two dimensions. Possible applications of the model are discussed.Comment: 19 pages, 7 figures; v3: minor corrections and clarifications; as published in Phys. Rev.

    Probing structural relaxation in complex fluids by critical fluctuations

    Full text link
    Complex fluids, such as polymer solutions and blends, colloids and gels, are of growing interest in fundamental and applied soft-condensed-matter science. A common feature of all such systems is the presence of a mesoscopic structural length scale intermediate between atomic and macroscopic scales. This mesoscopic structure of complex fluids is often fragile and sensitive to external perturbations. Complex fluids are frequently viscoelastic (showing a combination of viscous and elastic behaviour) with their dynamic response depending on the time and length scales. Recently, non-invasive methods to infer the rheological response of complex fluids have gained popularity through the technique of microrheology, where the diffusion of probe spheres in a viscoelastic fluid is monitored with the aid of light scattering or microscopy. Here we propose an alternative to traditional microrheology that does not require doping of probe particles in the fluid (which can sometimes drastically alter the molecular environment). Instead, our proposed method makes use of the phenomenon of "avoided crossing" between modes associated with the structural relaxation and critical fluctuations that are spontaneously generated in the system.Comment: 4 pages, 4 figure

    Free Energy Minimizers for a Two--Species Model with Segregation and Liquid-Vapor Transition

    Full text link
    We study the coexistence of phases in a two--species model whose free energy is given by the scaling limit of a system with long range interactions (Kac potentials) which are attractive between particles of the same species and repulsive between different species.Comment: 32 pages, 1 fig, plain tex, typeset twic

    Master crossover behavior of parachor correlations for one-component fluids

    Full text link
    The master asymptotic behavior of the usual parachor correlations, expressing surface tension σ\sigma as a power law of the density difference ρLρV\rho_{L}-\rho_{V} between coexisting liquid and vapor, is analyzed for a series of pure compounds close to their liquid-vapor critical point, using only four critical parameters (βc)1(\beta_{c})^{-1}, αc\alpha_{c}, ZcZ_{c} and YcY_{c}, for each fluid. ... The main consequences of these theoretical estimations are discussed in the light of engineering applications and process simulations where parachor correlations constitute one of the most practical method for estimating surface tension from density and capillary rise measurements

    Thermodynamic characteristics of the classical n-vector magnetic model in three dimensions

    Full text link
    The method of calculating the free energy and thermodynamic characteristics of the classical n-vector three-dimensional (3D) magnetic model at the microscopic level without any adjustable parameters is proposed. Mathematical description is perfomed using the collective variables (CV) method in the framework of the ρ4\rho^4 model approximation. The exponentially decreasing function of the distance between the particles situated at the N sites of a simple cubic lattice is used as the interaction potential. Explicit and rigorous analytical expressions for entropy,internal energy, specific heat near the phase transition point as functions of the temperature are obtained. The dependence of the amplitudes of the thermodynamic characteristics of the system for T>TcT>T_c and T<TcT<T_c on the microscopic parameters of the interaction potential are studied for the cases n=1,2,3n=1,2,3 and nn\to\infty. The obtained results provide the basis for accurate analysis of the critical behaviour in three dimensions including the nonuniversal characteristics of the system.Comment: 25 pages, 5 figure
    corecore