47 research outputs found

    A single centre experience with sequential and concomitant chemoradiotherapy in locally advanced stage IV tonsillar cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chemo-radiotherapy offers an alternative to primary surgery and adjuvant therapy for the management of locally advanced stage IV squamous cell carcinomas of the tonsil.</p> <p>Methods</p> <p>A retrospective analysis was performed of the outcomes of 41 patients with locoregionally advanced squamous cell carcinoma of the tonsil treated non-surgically at the Yorkshire Cancer Centre between January 2004 and December 2005. Due to long radiotherapy waiting times, patients received induction chemotherapy with cisplatin and 5-fluorouracil followed by either cisplatin concurrent chemoradiotherapy or radiotherapy alone.</p> <p>Results</p> <p>Median age was 55 years (range 34-76 years) and 28 (68%) patients were male. 35/41 patients (85%) received 2 or more cycles of induction chemotherapy. Following induction chemotherapy, 32/41 patients (78%) had a clinical response. Concomitant chemotherapy was given to 30/41 (73%). All patients received the planned radiotherapy dose with no delays. There were no treatment related deaths. Six (15%) patients had gastrostomy tubes placed before treatment, and 22 (54%) required nasogastric tube placement during or after treatment for nutritional support. 17 patients required unplanned admissions during treatment for supportive care. At 4 months post treatment assessment 35 out of 41 (85%) patients achieved complete clinical and radiographic response. Median follow-up is 38 months (8-61 months). Local and regional control rate in complete responders at 3 years was 91%. Distant metastases have been found in 4 (9.8%) patients. Three year progression-free survival rate in all patients is 75%. The 3-year cause specific survival and overall survival are 75% and 66% respectively.</p> <p>Conclusion</p> <p>Cisplatin-based induction and concurrent chemoradiotherapy provides excellent tumour control with acceptable toxicity for patients with locally advanced tonsillar cancer.</p

    Recurrence patterns of locally advanced head and neck squamous cell carcinoma after 3D conformal (chemo)-radiotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To establish recurrence patterns among locally advanced head and neck non-nasopharyngeal squamous cell carcinoma (HNSCC) patients treated with radical (chemo-) radiotherapy and to correlate the sites of loco-regional recurrence with radiotherapy doses and target volumes</p> <p>Method</p> <p>151 locally advanced HNSCC patients were treated between 2004-2005 using radical three-dimensional conformal radiotherapy. Patients with prior surgery to the primary tumour site were excluded. The sites of locoregional relapses were correlated with radiotherapy plans by the radiologist and a planning dosimetrist.</p> <p>Results</p> <p>Median age was 59 years (range:34-89). 35 patients had stage III disease, 116 patients had stage IV A/B. 36 patients were treated with radiotherapy alone, 42 with induction chemotherapy, 63 with induction and concomitant chemoradiotherapy and 10 concomitant chemoradiotherapy. Median follow-up was 38 months (range 3-62). 3-year cause specific survival was 66.8%. 125 of 151 (82.8%) achieved a complete response to treatment. Amongst these 125 there were 20 local-regional recurrence, comprising 8 local, 5 regional and 7 simultaneous local and regional; synchronous distant metastases occurred in 7 of the 20. 9 patients developed distant metastases in the absence of locoregional failure. For the 14 local recurrences with planning data available, 12 were in-field, 1 was marginal, and 1 was out-of-field. Of the 11 regional failures with planning data available, 7 were in-field, 1 was marginal and 3 were out-of-field recurrences.</p> <p>Conclusion</p> <p>The majority of failures following non-surgical treatment for locally advanced HNSCC were loco-regional, within the radiotherapy target volume. Improving locoregional control remains a high priority.</p

    Scalable synthesis of multicomponent multifunctional inorganic core@mesoporous silica shell nanocomposites

    Get PDF
    Integrating multiple materials with different functionalities in a single nanostructure enables advances in many scientific and technological applications. However, such highly sophisticated nanomaterials usually require complex synthesis processes that complicate their preparation in a sustainable and industrially feasible manner. Herein, we designed a simple general method to grow a mesoporous silica shell onto any combination of hydrophilic nanoparticle cores. The synthetic strategy, based on the adjustment of the key parameters of the sol-gel process for the silica shell formation, allows for the embedment of single, double, and triple inorganic nanoparticles within the same shell, as well as the size-control of the obtained nanocomposites. No additional interfacial adhesive layer is required on the nanoparticle surfaces for the embedding process. Adopting this approach, electrostatically stabilized, small-sized (from 4 to 15 nm) CeO2, Fe3O4, Gd2O3, NaYF4, Au, and Ag cores were used to test the methodology. The mean diameter of the resulting nanocomposites could be as low as 55 nm, with high monodispersity. These are very feasible sizes for biological intervention, and we further observed increased nanoparticle stability in physiological environments. As a demonstration of their increased activity as a result of this, the antioxidant activity of CeO2 cores was enhanced when in core-shell form. Remarkably, the method is conducted entirely at room temperature, atmospheric conditions, and in aqueous solvent with the use of ethanol as co-solvent. These facile and even "green" synthesis conditions favor scalability and easy preparation of multicomponent nanocomposite libraries with standard laboratory glassware and simple benchtop chemistry, through this sustainable and cost-effective fabrication process.This work was financially supported by the National Natural Science Foundation of China (31950410536 to E.C. and 22005221 to M.Z.), the Wuyi University (2018TP010 to E.C., 2018TP011 and 2020FKZX05 to M.Z., and 2019TD02 to J.P.), Guangdong Science and Technology Department (2019A050512006 to E.C.), the Academy of Finland (309374 to J.M.R.), and the Instituto de Salud Carlos III of Spain (PI19/00774 to G.F-V and G.C.), co-financed by FEDER, European Union, “A way of making Europe”

    Analysis of a rule-based curriculum plan optimization system with Spearman rank correlation

    No full text
    WOS: 000329163200016In corporations, accurate planning should be applied to manage the in-service training task within an optimum time period and without hindering the working tempo of the employees. For this reason, it is better to consider the curriculum planning task as a timetabling problem. However, when the timetables are prepared manually, it may turn out to be a complicated and time-consuming problem. In this study, it is aimed to evaluate the results of software introduced previously, which seeks to find a solution to the curriculum planning problem of in-service training programs in corporations using a rule-based genetic algorithm (GA). The input data of the GA is the prerequisite rule set of the modules of the training program, where these rules are used for the fitness function of the system. The results are compared with the suggestion of an expert trainer using a nonparametric correlation test, and the best parameter combination of the GA giving the most similar result to that of the expert's is determined. According to the tests, the results gathered are considered to be 97% reliable when compared with the suggested module range

    FEASIBILITY AND EFFICACY OF INDUCTION DOCETAXEL, CISPLATIN, AND 5-FLUOROURACIL CHEMOTHERAPY COMBINED WITH CISPLATIN CONCURRENT CHEMORADIOTHERAPY FOR NONMETASTATIC STAGE IV HEAD-AND-NECK SQUAMOUS CELL CARCINOMAS

    No full text
    Purpose: To report the experience of treating selected fit patients with locally advanced head-and-neck squamous cell carcinoma with three cycles of induction TPF (docetaxel 75 mg/m(2), cisplatin 75 mg/m(2), 5-fluorouracil 750 mg/m(2), Days 2-5) followed by concurrent three-weekly bolus cisplatin 100 mg/m(2) chemoradiotherapy

    Circumventing Drug Treatment? : Intrinsic Lethal Effects of Polyethyleneimine (PEI)-Functionalized Nanoparticles on Glioblastoma Cells Cultured in Stem Cell Conditions

    Get PDF
    Glioblastoma (GB) is the most frequent malignant tumor originating from the centralnervous system. Despite breakthroughs in treatment modalities for other cancer types, GB remainslargely irremediable due to the high degree of intratumoral heterogeneity, infiltrative growth, andintrinsic resistance towards multiple treatments. A sub-population of GB cells, glioblastoma stem cells(GSCs), act as a reservoir of cancer-initiating cells and consequently, constitute a significant challengefor successful therapy. In this study, we discovered that PEI surface-functionalized mesoporoussilica nanoparticles (PEI-MSNs), without any anti-cancer drug, very potently kill multiple GSClines cultured in stem cell conditions. Very importantly, PEI-MSNs did not affect the survival ofestablished GB cells, nor other types of cancer cells cultured in serum-containing medium, even at25 times higher doses. PEI-MSNs did not induce any signs of apoptosis or autophagy. Instead, asa potential explanation for their lethality under stem cell culture conditions, we demonstrate thatthe internalized PEI-MSNs accumulated inside lysosomes, subsequently causing a rupture of thelysosomal membranes. We also demonstrate blood–brain-barrier (BBB) permeability of the PEI-MSNs in vitroandin vivo. Taking together the recent indications for the vulnerability of GSCs for lysosomaltargeting and the lethality of the PEI-MSNs on GSCs cultured under stem cell culture conditions,the results enforcein vivotesting of the therapeutic impact of PEI-functionalized nanoparticles infaithful preclinical GB models.Peer reviewe

    Comparative safety evaluation of silica-based particles

    No full text
    PURPOSE: Silica nanoparticles (SNPs) are increasingly used as drug delivery systems (DDS) and for biomedical imaging. Therapeutic and diagnostic agents can be incorporated into the silica matrix to improve the stability and dissolution of drug substances in biological systems. However, the safety of SNPs as drug carriers remains controversial. To date, no validated and accepted nano-specific tests exist to predict the potentially harmful impact of these materials on the human body. METHODS: We synthesized by a systematic approach 12 different types of SNPs with varying size, surface topology (porous vs non-porous), and surface modifications. We characterized these particles in terms of dry state and hydrodynamic diameter, specific surface area, and net surface charge (Îś-potential). For cellular studies, we exposed non-phagocytic (HepG2) cells, phagocytic (THP-1) cells, and erythrocytes to SNPs. Cellular uptake and stability of fluorescently labeled SNPs were analyzed by confocal microscopy and flow cytometry. RESULTS: SNPs with a porous surface and negative net surface charge had the strongest impact on cell viability. This is in contrast to non-porous SNPs. None of the studied particles induced oxidative stress in either cell lines. Particles with a negative surface charge induced hemolysis in a concentration-dependent manner. CONCLUSIONS: Physico-chemical properties promoting cytotoxicity and hemolysis were investigated. Our study revealed potential hazards of spherical amorphous SNPs
    corecore