115 research outputs found

    Sleep as a Novel Biomarker and a Promising Therapeutic Target for Cerebral Small Vessel Disease: A Review Focusing on Alzheimer’s Disease and the Blood-Brain Barrier

    Get PDF
    Cerebral small vessel disease (CSVD) is a leading cause of cognitive decline in elderly people and development of Alzheimer’s disease (AD). Blood–brain barrier (BBB) leakage is a key pathophysiological mechanism of amyloidal CSVD. Sleep plays a crucial role in keeping health of the central nervous system and in resistance to CSVD. The deficit of sleep contributes to accumulation of metabolites and toxins such as beta-amyloid in the brain and can lead to BBB disruption. Currently, sleep is considered as an important informative platform for diagnosis and therapy of AD. However, there are no effective methods for extracting of diagnostic information from sleep characteristics. In this review, we show strong evidence that slow wave activity (SWA) (0–0.5 Hz) during deep sleep reflects glymphatic pathology, the BBB leakage and memory deficit in AD. We also discuss that diagnostic and therapeutic targeting of SWA in AD might lead to be a novel era in effective therapy of AD. Moreover, we demonstrate that SWA can be pioneering non-invasive and bed–side technology for express diagnosis of the BBB permeability. Finally, we review the novel data about the methods of detection and enhancement of SWA that can be biomarker and a promising therapy of amyloidal CSVD and CSVD associated with the BBB disorders.Russian Science FoundationRussian Foundation for Basic ResearchMinistry of Science and Higher Education of the Russian FederationPeer Reviewe

    Direct laser-induced singlet oxygen in biological systems: application from in vitro to in vivo

    Get PDF
    In recent years, there has been increasing interest in the singlet form of oxygen as a regulator of the physiological functions of cells. The use of photosensitisers is a classical mechanism for the excitation of the main triplet form of oxygen and the generation of its singlet form. At the same time, it has been shown that there is a possibility of direct optical excitation of the main oxygen form into the singlet state by light at certain wavelengths. This review article aims to combine recent accumulated experience in the field of direct optical generation of singlet oxygen. We focus on works on the application of a 1267 nm wavelength, which is the most frequently used and well-studied in this area. In this review, we consider the use of laser-induced singlet oxygen in various biomedical applications both at the cellular level and at the level of whole organisms. This review presents the latest results on the use of singlet oxygen for therapeutic effects on cancer cells, as well as for photostimulation of neurons and the vascular and lymphatic systems

    Mechanisms of Activation of Brain’s Drainage during Sleep: The Nightlife of Astrocytes

    Get PDF
    The study of functions, mechanisms of generation, and pathways of movement of cerebral fluids has a long history, but the last decade has been especially productive. The proposed glymphatic hypothesis, which suggests a mechanism of the brain waste removal system (BWRS), caused an active discussion on both the criticism of some of the perspectives and our intensive study of new experimental facts. It was especially found that the intensity of the metabolite clearance changes significantly during the transition between sleep and wakefulness. Interestingly, at the cellular level, a number of aspects of this problem have been focused on, such as astrocytes–glial cells, which, over the past two decades, have been recognized as equal partners of neurons and perform many important functions. In particular, an important role was assigned to astrocytes within the framework of the glymphatic hypothesis. In this review, we return to the “astrocytocentric” view of the BWRS function and the explanation of its activation during sleep from the viewpoint of new findings over the last decade. Our main conclusion is that the BWRS’s action may be analyzed both at the systemic (whole-brain) and at the local (cellular) level. The local level means here that the neuro-glial-vascular unit can also be regarded as the smallest functional unit of sleep, and therefore, the smallest functional unit of the BWRS.Russian Science FoundationPeer Reviewe

    Photodynamic opening of blood-brain barrier

    Get PDF
    Photodynamic treatment (PDT) causes a significant increase in the permeability of the blood-brain barrier (BBB) in healthy mice. Using different doses of laser radiation (635 nm, 10-40 J/cm2 ) and photosensitizer (5-aminolevulinic acid – 5-ALA, 20 and 80 mg/kg, i.v.), we found that the optimal PDT for the reversible opening of the BBB is 15 J/cm2 and 5- ALA, 20 mg/kg, exhibiting brain tissues recovery 3 days after PDT. Further increases in the laser radiation or 5-ALA doses have no amplifying effect on the BBB permeability, but are associated with severe damage of brain tissues. These results can be an informative platform for further studies of new strategies in brain drug delivery and for better understanding of mechanisms underlying cerebrovascular effects of PDT-related fluorescence guided resection of brain tumo

    Molecular mechanisms of the opening of the blood-brain barrier in rodents by means of sound

    Get PDF
    In this study, in experiments on 35 healthy male mice of the C57BL/6 line weighing 25±3 g, it was shown that loud sound/music for 2 hours causes a temporary increase in the permeability of the blood-brain barrier (BBB) in rodents. To investigate changes in the permeability of the blood-brain barrier, the molecular mechanisms responsible for its discovery were investigated using laser speckle-contrast imaging of regional cerebral blood fl ow (rCBF), immunohistochemical analysis and biochemical analysis of adrenaline in blood plasma. With a sound-dependent increase in the permeability of the blood-brain barrier, there was a decrease in signal intensity from CLND-5, Occ, JAM and an increase in the signal from ZO-1. However, after 4 hours, the signal intensity from the studied proteins was restored, which may be due to their internalization. The results of the study of the eff ects of music and sound on of BBB in the intact brain require a revision of traditional knowledge about the barrier functions of the brain and open up new opportunities for non-invasive drug delivery strategies. They also may off er some insight into the etiology of brain disorders that follow inadvertent or deliberate exposure to very loud sounds, i.e. battle or rock concerts

    Off-axis holographic laser speckle contrast imaging of blood vessels in tissues

    Get PDF
    Laser speckle contrast imaging (LSCI) has become one of the most common tools for functional imaging in tissues. Incomplete theoretical description and sophisticated interpretation of measurement results are completely sidelined by a low-cost and simple hardware, fastness, consistent results, and repeatability. In addition to the relatively low measuring volume with around 700   μ m of the probing depth for the visible spectral range of illumination, there is no depth selectivity in conventional LSCI configuration; furthermore, in a case of high NA objective, the actual penetration depth of light in tissues is greater than depth of field (DOF) of an imaging system. Thus, the information about these out-of-focus regions persists in the recorded frames but cannot be retrieved due to intensity-based registration method. We propose a simple modification of LSCI system based on the off-axis holography to introduce after-registration refocusing ability to overcome both depth-selectivity and DOF problems as well as to get the potential possibility of producing a cross-section view of the specimen

    Photodynamic Opening of the Blood–Brain Barrier and the Meningeal Lymphatic System: The New Niche in Immunotherapy for Brain Tumors

    Get PDF
    Photodynamic therapy (PDT) is a promising add-on therapy to the current standard of care for patients with glioblastoma (GBM). The traditional explanation of the anti-cancer PDT effects involves the PDT-induced generation of a singlet oxygen in the GBM cells, which causes tumor cell death and microvasculature collapse. Recently, new vascular mechanisms of PDT associated with opening of the blood–brain barrier (OBBB) and the activation of functions of the meningeal lymphatic vessels have been discovered. In this review, we highlight the emerging trends and future promises of immunotherapy for brain tumors and discuss PDT-OBBB as a new niche and an important informative platform for the development of innovative pharmacological strategies for the modulation of brain tumor immunity and the improvement of immunotherapy for GBM.RF Governmental GrantRSFRFBRPeer Reviewe

    Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology

    Get PDF
    For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a "gold key” has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research

    Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing

    Get PDF
    In this work, we consider the use of optical clearing agents to improve imaging quality of the cerebral blood flow of newborn mice. Aqueous 60%-glycerol solution, aqueous 70%-OmnipaqueTM(300) solution and OmnipaqueTM (300) solution in water/DMSO(25%/5%) were selected as the optical clearing agents. Laser speckle contrast imaging (LSCI) was used for imaging of cerebral blood flow in newborn mice brain during topical optical clearing of tissuesin the area of the fontanelle. These results demonstrate the effectiveness of glycerol and Omnipaque solutions as optical clearing agents for investigation of cerebral blood flow in newborn mice without scalp removing and skull thinning
    corecore