12 research outputs found

    A Killing Disease Epidemic Among Displaced Sudanese Population Identified as Visceral Leishmaniasis.

    Get PDF
    A fatal disease epidemic affected the Bentiu area in southern Sudan and led to a mass migration of the Nuer tribe searching for treatment. The initially available information revealed a high mortality rate due to a possible occurrence of tuberculosis, malaria, enteric fever or visceral leishmaniasis (VL). Serological screening of 53 of the most severely affected patients in an enzyme-linked immunosorbent assay (ELISA) or an improved direct agglutination test (DAT) revealed positivity for VL. In 39 of those patients, diagnosis was confirmed by identification of Leishmania donovani amastigotes in lymph node or bone-marrow aspirates. In a total of 2714 patients observed, 1195 (44.0%) had clinical symptoms suggesting VL: DAT positive titers (1:3200-greater than or equal to 1:12800) were obtained in 654 (24.1%), of whom 325 were confirmed parasitologically. Forty-two VL cases died before or during treatment, giving a mortality rate of 6.4%. Among the intercurrent infections diagnosed in the VL population (654), respiratory involvements (31.7%) and malaria (10.7%) were most prevalent. With the exception of four (0.6%), all other VL patients (509) responded readily to sodium stibogluconate. The factors initiating the outbreak are discussed. Malnutrition and nomadic movements to potential VL endemic areas appeared to be the most important. HIV infection as a possible predisposition seemed remote considering the clinical and epidemiological similarity to VL occurring in East Africa, adequate humoral response in DAT, and immediate positive response to specific anti-Leishmania chemotherapy

    A  -mercaptoethanol-modified enzyme-linked immunosorbent assay for diagnosis of canine visceral leishmaniasis

    No full text
    Two immunoglobulin G enzyme-linked immunosorbent assay (ELISA) versions using whole promastigotes of Leishmania infantum (syn. Leishmania chagasi) treated either with β-mercaptoethanol (β-ME-ELISA) or trypsin (TRYP-ELISA) as antigens were developed for the diagnosis of canine visceral leishmaniasis (CVL). By comparison with the direct agglutination test (DAT; 100%, 31/31; 95% confidence interval [CI]: 86.3–100%), slightly lower sensitivity was demonstrated for the newly developed β-ME-ELISA (93.5%, 29/31; 95% CI: 77.2–98.9%). Sensitivity was higher for β-ME-ELISA compared with TRYP-ELISA (87.1%, 27/31; 95% CI: 69.2–95.8%) in serum samples from dogs with CVL. When tested with sera from 37 healthy dogs and from 45 dogs with clinical conditions other than CVL, a specificity of 97.6% (80/82; 95% CI: 90.1–99.6%) was estimated for β-ME-ELISA as compared to 100% (82/82; 95% CI: 94.4–100%) and 95.1% (78/82; 95% CI: 87.3–98.4%) for DAT and TRYP-ELISA, respectively. Observed agreement was 94.0% (95% CI: 88.7–97.1%) between DAT and β-ME-ELISA (κ = 0.879; 95% CI: 0.803–0.956) and 87.4% (95% CI: 80.8–92.1%) between DAT and TRYP-ELISA (κ = 0.743; 95% CI: 0.636–0.851). Current results advocate application of the new β-ME-ELISA for diagnosis of CVL at the laboratory level and confirmation of results obtained with the DAT in field studies

    CMS physics technical design report, volume II: Physics performance

    No full text
    CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B(s) production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E(T), B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model

    CMS Physics: Technical Design Report Volume 1: Detector Performance and Software

    No full text

    CMS physics technical design report, volume II: Physics performance

    Get PDF
    CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z\u27 and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau\u27s, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model
    corecore