4 research outputs found

    Morphological and Physiological Responses to Drought Stress of European Provenances of Scots Pine

    Get PDF
    Increased frequency and intensity of drought episodes as a consequence of current and predicted climatic changes require an understanding of the intra-specific variability in structural and physiological characteristics of forest trees. Adaptive plasticity and genotypic variability are considered two of the main processes by which trees can either be selected or can acclimate to changing conditions. We tested for the relative importance of genotypic variability, phenotypic plasticity and their interaction by comparing the growth and physiological performance of 15 provenances of Scots pine (Pinus sylvestris L.), under two contrasting irrigation regimes. Selected provenances representing the distribution range of the species in Anatolia, Turkey, were contrasted with seed sources spanning the range from Spain to the UK, in Europe. We found a strong latitudinal differentiation among the 15 provenances for survival after drought, largely the result of the higher mortality of some western and central European provenances. Differentiation in diameter and height growth was also clear with the worst provenance coming from Western Europe (UK). Among the Turkish provenances, the more extreme southern high-elevation populations showed greater survival and lower growth rates overall. Differences in growth and survival were related to differences in photosynthetic pigment and nutrient contents and in the photosynthetic efficiency of photosystem II. Plasticity was strongest for growth characters and pigment contents.WoSScopu

    Plasticity in dendroclimatic response across the distribution range of Aleppo pine (Pinus halepensis)

    Get PDF
    We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that includes the contribution of genetic variation and phenotypic plasticity can improve the reliability of the ecological inferences derived from the climate-growth relationships.This work was partially supported by Spanish Ministry of Education and Science co-funded by FEDER program (CGL2012-31668), the European Union and the National Ministry of Education and Religion of Greece (EPEAEK- Environment – Archimedes), the Slovenian Research Agency (program P4-0015), and the USDA Forest Service. The cooperation among international partners was supported by the COST Action FP1106, STREeSS

    A case with proximal femoral focal deficiency (PFFD) and fibular A/hypoplasia (FA/H) associated with urogenital anomalies

    No full text
    Malformations of the lower limbs are rare and heterogeneous anomalies. Some congenital anomalies involving face, gastrointestinal system, skeletal system, urogenital system, heart, lung and diaphragma associated with lower limb malformations have been described in the literature. Here, we report a case of left proximal femoral focal deficiency (PFFD) together with fibular aplasia associated with left undescended testis and hypospadias. The putative embryologic mechanisms of lower limb defects and their possible association with lower urogenital tract malformations are also discussed
    corecore