10 research outputs found

    Next-generation proteomics reveals a greater antioxidative response to drought in Coffea arabica than in Coffea canephora

    Get PDF
    Drought is a major threat to coffee, compromising the quality and quantity of its production. We have analyzed the core proteome of 18 Coffea canephora cv. Conilon Clone 153 and C. arabica cv. Icatu plants and assessed their responses to moderate (MWD) and severe (SWD) water deficits. Label-free quantitative shotgun proteomics identified 3000 proteins in both genotypes, but less than 0.8% contributed to ca. 20% of proteome biomass. Proteomic changes were dependent on the severity of drought, being stronger under SWD and with an enrolment of different proteins, functions, and pathways than under MWD. The two genotypes displayed stress-responsive proteins under SWD, but only C. arabica showed a higher abundance of proteins involved in antioxidant detoxification activities. Overall, the impact of MWD was minor in the two genotypes, contrary to previous studies. In contrast, an extensive proteomic response was found under SWD, with C. arabica having a greater potential for acclimation/resilience than C. canephora. This is likely supported by a wider antioxidative response and an ability to repair photosynthetic structures, being crucial to develop new elite genotypes that assure coffee supply under water scarcity levels.info:eu-repo/semantics/publishedVersio

    Next-Generation Proteomics Reveals a Greater Antioxidative Response to Drought in Coffea arabica Than in Coffea canephora

    Get PDF
    Drought is a major threat to coffee, compromising the quality and quantity of its production. We have analyzed the core proteome of 18 Coffea canephora cv. Conilon Clone 153 and C. arabica cv. Icatu plants and assessed their responses to moderate (MWD) and severe (SWD) water deficits. Label-free quantitative shotgun proteomics identified 3000 proteins in both genotypes, but less than 0.8% contributed to ca. 20% of proteome biomass. Proteomic changes were dependent on the severity of drought, being stronger under SWD and with an enrolment of different proteins, functions, and pathways than under MWD. The two genotypes displayed stress-responsive proteins under SWD, but only C. arabica showed a higher abundance of proteins involved in antioxidant detoxification activities. Overall, the impact of MWD was minor in the two genotypes, contrary to previous studies. In contrast, an extensive proteomic response was found under SWD, with C. arabica having a greater potential for acclimation/resilience than C. canephora. This is likely supported by a wider antioxidative response and an ability to repair photosynthetic structures, being crucial to develop new elite genotypes that assure coffee supply under water scarcity levelsinfo:eu-repo/semantics/publishedVersio

    Protective Responses at the Biochemical and Molecular Level Differ between a Coffea arabica L. Hybrid and Its Parental Genotypes to Supra-Optimal Temperatures and Elevated Air [CO2]

    Get PDF
    Climate changes with global warming associated with rising atmospheric [CO2] can strongly impact crop performance, including coffee, which is one of the most world’s traded agricultural commodities. Therefore, it is of utmost importance to understand the mechanisms of heat tolerance and the potential role of elevated air CO2 (eCO2) in the coffee plant response, particularly regarding the antioxidant and other protective mechanisms, which are crucial for coffee plant acclimation. For that, plants of Coffea arabica cv. Geisha 3, cv. Marsellesa and their hybrid (Geisha 3 Marsellesa) were grown for 2 years at 25/20 C (day/night), under 400 (ambient CO2, aCO2) or 700 L (elevated CO2, eCO2) CO2 L-1, and then gradually submitted to a temperature increase up to 42/30 C, followed by recovery periods of 4 (Rec4) and 14 days (Rec14). Heat (37/28 C and/or 42/30 C) was the major driver of the response of the studied protective molecules and associated genes in all genotypes. That was the case for carotenoids (mostly neoxanthin and lutein), but the maximal (a + b) carotenes pool was found at 37/28 C only in Marsellesa. All genes (except VDE) encoding for antioxidative enzymes (catalase, CAT; superoxide dismutases, CuSODs; ascorbate peroxidases, APX) or other protective proteins (HSP70, ELIP, Chape20, Chape60) were strongly upregulated at 37/28 C, and, especially, at 42/30 C, in all genotypes, but with maximal transcription in Hybrid plants. Accordingly, heat greatly stimulated the activity of APX and CAT (all genotypes) and glutathione reductase (Geisha3, Hybrid) but not of SOD. Notably, CAT activity increased even at 42/30 C, concomitantly with a strongly declined APX activity. Therefore, increased thermotolerance might arise through the reinforcement of some ROS-scavenging enzymes and other protective molecules (HSP70, ELIP, Chape20, Chape60). Plants showed low responsiveness to single eCO2 under unstressed conditions, while heat promoted changes in aCO2 plants. Only eCO2 Marsellesa plants showed greater contents of lutein, the pool of the xanthophyll cycle components (V + A + Z), and b-carotene, compared to aCO2 plants at 42/30 C. This, together with a lower CAT activity, suggests a lower presence of H2O2, likely also associated with the higher photochemical use of energy under eCO2. An incomplete heat stress recovery seemed evident, especially in aCO2 plants, as judged by the maintenance of the greater expression of all genes in all genotypes and increased levels of zeaxanthin (Marsellesa and Hybrid) relative to their initial controls. Altogether, heat was the main response driver of the addressed protective molecules and genes, whereas eCO2 usually attenuated the heat response and promoted a better recovery. Hybrid plants showed stronger gene expression responses, especially at the highest temperature, when compared to their parental genotypes, but altogether, Marsellesa showed a greater acclimation potential. The reinforcement of antioxidative and other protective molecules are, therefore, useful biomarkers to be included in breeding and selection programs to obtain coffee genotypes to thrive under global warming conditions, thus contributing to improved crop sustainabilityinfo:eu-repo/semantics/publishedVersio

    High-resolution shotgun proteomics reveals that increased air [CO2] amplifies the acclimation response of coffea species to drought regarding antioxidative, energy, sugar, and lipid dynamics

    Get PDF
    Funding Information: This work received funding support from the European Union's Horizon 2020 research and innovation program (grant agreement No 727934 , project BreedCAFS), and from national funds from Fundação para a Ciência e a Tecnologia, I.P. (FCT) , Portugal, through the project PTDC/ASP-AGR/31257/2017 , and the research units UIDB/00239/2020 ( CEF ), and UIDP/04035/2020 (GeoBioTec) and under the Scientific Employment Stimulus - Individual Call (CEEC Individual) - 2021.01107.CEECIND/CP1689/CT0001 (IM) . Fellowships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq) , (to F.M. DaMatta and F.L. Partelli), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Brazil (FAPEMIG, projects CRA-RED-00053-16 and APQ 01512-18 , to F.M. DaMatta) are also greatly acknowledged. Publisher Copyright: © 2022 Elsevier GmbHAs drought threatens crop productivity it is crucial to characterize the defense mechanisms against water deficit and unveil their interaction with the expected rise in the air [CO2]. For that, plants of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu grown under 380 (aCO2) or 700 μL L−1 (eCO2) were exposed to moderate (MWD) and severe (SWD) water deficits. Responses were characterized through the activity and/or abundance of a selected set of proteins associated with antioxidative (e.g., Violaxanthin de-epoxidase, Superoxide dismutase, Ascorbate peroxidases, Monodehydroascorbate reductase), energy/sugar (e.g., Ferredoxin-NADP reductase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase, mannose-6-phosphate isomerase, Enolase), and lipid (Lineolate 13S-lipoxygenase) processes, as well as with other antioxidative (ascorbate) and protective (HSP70) molecules. MWD caused small changes in both genotypes regardless of [CO2] level while under the single imposition to SWD, only Icatu showed a global reinforcement of most studied proteins supporting its tolerance to drought. eCO2 alone did not promote remarkable changes but strengthened a robust multi-response under SWD, even supporting the reversion of impacts already observed by CL153 at aCO2. In the context of climate changes where water constraints and [CO2] levels are expected to increase, these results highlight why eCO2 might have an important role in improving drought tolerance in Coffea species.publishersversionpublishe

    Adsorption of myoglobin on calixarenes and biocatalysis in organic media

    No full text
    Derivatives of p-tert-butylcalix[4,6,8]arene carboxylic acids were used for selective adsorption of myoglobin.Amixtureofmyoglobin,laccaseandperoxidase wasusedforextractionwithcalixarenesandonlymyoglobin was selectively extracted to organic media. Myoglobin and Mb c–calixarene exhibited pseudoactivity of peroxidase in aqueous and organic media. This protein-calixarene complex exhibited the highest specific activity of 1.37 × 10−1 U.mg protein−1 at initial pH 6.5 of myoglobin aqueous solution. Apparent kinetic parameters (V max, K m, k cat and k cat/K m) for the pseudoperoxidase activity were determined in organic media for different initial pH values of myoglobin aqueous solution by Michaelis-Menten plot. The stability of this complex was studied for different initial pH values and t1/2 values were obtained in the range of 3.5–5.2 days. The extracted Mb c in organic media was recovered into fresh aqueous solutions at alkaline pH with a recovery of pseudoperoxidase activity of over 100%.info:eu-repo/semantics/publishedVersio

    Resilient and sensitive key points of the photosynthetic machinery of Coffea spp. to single and superimposed exposure to severe drought and heat stresses

    No full text
    Original ResearchThis study unveils the single and combined drought and heat impacts on the photosynthetic performance of Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered (WW) potted plants were gradually submitted to severe water deficit (SWD) along 20 days under adequate temperature (25/20°C, day/night), and thereafter exposed to a gradual temperature rise up to 42/30°C, followed by a 14-day water and temperature recovery. Single drought affected all gas exchanges (including Amax) and most fluorescence parameters in both genotypes. However, Icatu maintained Fv/Fm and RuBisCO activity, and reinforced electron transport rates, carrier contents, and proton gradient regulation (PGR5) and chloroplast NADH dehydrogenase-like (NDH) complex proteins abundance. This suggested negligible non-stomatal limitations of photosynthesis that were accompanied by a triggering of protective cyclic electron transport (CEF) involving both photosystems (PSs). These findings contrasted with declines in RuBisCO and PSs activities, and cytochromes (b559, f, b563) contents in CL153. Remarkable heat tolerance in potential photosynthetic functioning was detected in WW plants of both genotypes (up to 37/28°C or 39/30°C), likely associated with CEF in Icatu. Yet, at 42/30°C the tolerance limit was exceeded. Reduced Amax and increased Ci values reflected non-stomatal limitations of photosynthesis, agreeing with impairments in energy capture (F0 rise), PSII photochemical efficiency, and RuBisCO and Ru5PK activities. In contrast to PSs activities and electron carrier contents, enzyme activities were highly heat sensitive. Until 37/28°C, stresses interaction was largely absent, and drought played the major role in constraining photosynthesis functioning. Harsher conditions (SWD, 42/30°C) exacerbated impairments to PSs, enzymes, and electron carriers, but uncontrolled energy dissipation was mitigated by photoprotective mechanisms. Most parameters recovered fully between 4 and 14 days after stress relief in both genotypes, although some aftereffects persisted in SWD plants. Icatu was more drought tolerant, with WW and SWD plants usually showing a faster and/or greater recovery than CL153. Heat affected both genotypes mostly at 42/30°C, especially in SWD and Icatu plants. Overall, photochemical components were highly tolerant to heat and to stress interaction in contrast to enzymes that deserve special attention by breeding programs to increase coffee sustainability in climate change scenariosinfo:eu-repo/semantics/publishedVersio

    Next-Generation Proteomics Reveals a Greater Antioxidative Response to Drought in Coffea arabica Than in Coffea canephora

    No full text
    International audienceDrought is a major threat to coffee, compromising the quality and quantity of its production. We have analyzed the core proteome of 18 Coffea canephora cv. Conilon Clone 153 and C. arabica cv. Icatu plants and assessed their responses to moderate (MWD) and severe (SWD) water deficits. Label-free quantitative shotgun proteomics identified 3000 proteins in both genotypes, but less than 0.8% contributed to ca. 20% of proteome biomass. Proteomic changes were dependent on the severity of drought, being stronger under SWD and with an enrolment of different proteins, functions, and pathways than under MWD. The two genotypes displayed stress-responsive proteins under SWD, but only C. arabica showed a higher abundance of proteins involved in antioxidant detoxification activities. Overall, the impact of MWD was minor in the two genotypes, contrary to previous studies. In contrast, an extensive proteomic response was found under SWD, with C. arabica having a greater potential for acclimation/resilience than C. canephora. This is likely supported by a wider antioxidative response and an ability to repair photosynthetic structures, being crucial to develop new elite genotypes that assure coffee supply under water scarcity levels

    High-resolution shotgun proteomics reveals that increased air [CO2] amplifies the acclimation response of Coffea species to drought regarding antioxidative, energy, sugar, and lipid dynamics

    No full text
    International audienceAs drought threatens crop productivity it is crucial to characterize the defense mechanisms against water deficit and unveil their interaction with the expected rise in the air [CO2]. For that, plants of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu grown under 380 (aCO2) or 700 μL L-1 (eCO2) were exposed to moderate (MWD) and severe (SWD) water deficits. Responses were characterized through the activity and/or abundance of a selected set of proteins associated with antioxidative (e.g., Violaxanthin de-epoxidase, Superoxide dismutase, Ascorbate peroxidases, Monodehydroascorbate reductase), energy/sugar (e.g., Ferredoxin-NADP reductase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase, mannose-6-phosphate isomerase, Enolase), and lipid (Lineolate 13S-lipoxygenase) processes, as well as with other antioxidative (ascorbate) and protective (HSP70) molecules. MWD caused small changes in both genotypes regardless of [CO2] level while under the single imposition to SWD, only Icatu showed a global reinforcement of most studied proteins supporting its tolerance to drought. eCO2 alone did not promote remarkable changes but strengthened a robust multi-response under SWD, even supporting the reversion of impacts already observed by CL153 at aCO2. In the context of climate changes where water constraints and [CO2] levels are expected to increase, these results highlight why eCO2 might have an important role in improving drought tolerance in Coffea species

    Resilient and sensitive key points of the photosynthetic machinery of coffea spp. to the single and superimposed exposure to severe drought and heat stresses

    Get PDF
    This study unveils the single and combined drought and heat impacts on the photosynthetic performance ofCoffea arabicacv. Icatu andC. canephoracv. Conilon Clone 153 (CL153). Well-watered (WW) potted plants were gradually submitted to severe water deficit (SWD) along 20 days under adequate temperature (25/20 degrees C, day/night), and thereafter exposed to a gradual temperature rise up to 42/30 degrees C, followed by a 14-day water and temperature recovery. Single drought affected all gas exchanges (includingA(max)) and most fluorescence parameters in both genotypes. However, Icatu maintainedF(v)/F(m)and RuBisCO activity, and reinforced electron transport rates, carrier contents, and proton gradient regulation (PGR5) and chloroplast NADH dehydrogenase-like (NDH) complex proteins abundance. This suggested negligible non-stomatal limitations of photosynthesis that were accompanied by a triggering of protective cyclic electron transport (CEF) involving both photosystems (PSs). These findings contrasted with declines in RuBisCO and PSs activities, and cytochromes (b(559),f,b(563)) contents in CL153. Remarkable heat tolerance in potential photosynthetic functioning was detected in WW plants of both genotypes (up to 37/28 degrees C or 39/30 degrees C), likely associated with CEF in Icatu. Yet, at 42/30 degrees C the tolerance limit was exceeded. ReducedA(max)and increasedC(i)values reflected non-stomatal limitations of photosynthesis, agreeing with impairments in energy capture (F(0)rise), PSII photochemical efficiency, and RuBisCO and Ru5PK activities. In contrast to PSs activities and electron carrier contents, enzyme activities were highly heat sensitive. Until 37/28 degrees C, stresses interaction was largely absent, and drought played the major role in constraining photosynthesis functioning. Harsher conditions (SWD, 42/30 degrees C) exacerbated impairments to PSs, enzymes, and electron carriers, but uncontrolled energy dissipation was mitigated by photoprotective mechanisms. Most parameters recovered fully between 4 and 14 days after stress relief in both genotypes, although some aftereffects persisted in SWD plants. Icatu was more drought tolerant, with WW and SWD plants usually showing a faster and/or greater recovery than CL153. Heat affected both genotypes mostly at 42/30 degrees C, especially in SWD and Icatu plants. Overall, photochemical components were highly tolerant to heat and to stress interaction in contrast to enzymes that deserve special attention by breeding programs to increase coffee sustainability in climate change scenarios.info:eu-repo/semantics/publishedVersio
    corecore