128 research outputs found

    Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments

    Get PDF
    The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared to experimental results (weak motion and microtremors). The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping. In this specific area of Nice, a one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium and an isotropic linear viscoelastic solid (standard solid). The thickness of the surface layer, its mechanical properties, its general shape as well as the seismic wave type involved have a great influence on the maximum amplification and the frequency for which it occurs. For real earthquakes, the numerical results are in very good agreement with experimental measurements for each motion component. Two-dimensional basin effects are found to be very strong and are well reproduced numerically

    Wave propagation through soils in centrifuge testing.

    No full text
    International audienceWave propagation phenomena in soils can be experimentally simulated using centrifuge scale models. An original excitation device (drop-ball arrangement) is proposed to generate short wave trains. Wave reflections on model boundaries are taken into account and removed by homomorphic filtering. Propagation is investigated through dispersion laws. For drop-ball experiments, spherical wave field analysis assuming linear viscoelasticity leads to a complete analytical description of wave propagation. Damping phenomena are examined and evaluated using this description

    A Fast Multipole Method formulation for 3D elastodynamics in the frequency domain

    No full text
    The solution of the elastodynamic equations using boundary element methods (BEMs) gives rise to fully-populated matrix equations. Earlier investigations on the Helmholtz and Maxwell equations have established that the Fast Multipole (FM) method reduces the complexity of a BEM solution to N \mbox{log}_{2}N per GMRES teration. The present Note address the extension of the FM-BEM strategy to 3D elastodynamics in the frequency domain. Its efficiency and accuracy are demonstrated on numerical examples involving up to N=O(106)N=O(10^{6}) nodal unknowns

    Sollicitations sismiques dues aux exploitations minières : amplification des ondes en surface (et vibrations des structures)

    Get PDF
    National audienceL'objectif de ce travail est d'analyser l'impact des secousses induites par les exploitations minières sur les structures situées en surface. Du fait des conditions géologiques locales, le mouvement créé par les secousses peut parfois être amplifié de façon importante en surface (effet de site). A partir d'une modélisation numérique du problème, l'amplification du mouvement est analysée pour différentes formes de remplissages sédimentaires et des contrastes de propriétés entre couches variables. Les valeurs de fréquences fondamentales (i.e amplification maximale) sont comparées à des résultats antérieurs

    3D Hopkinson bar: new experiments for dynamic testing on soils.

    No full text
    International audienceThe direct analysis of the dynamic response of materials is possible using Split Hopkinson pressure bar method. For soils, it has to be adapted since the specimen has generally poor mechanical properties. An original experimental arrangement called "Three-Dimensional Split Hopkinson Pressure Bar" (3D SHPB) is proposed. It allows the measurement of the complete three-dimensional dynamic response of soils. Different types of confinement systems are used. The results on different loading paths are compared with other works on sand and clay. The analysis at grain-size level gives further elements on the comminution process

    Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    Full text link
    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the Boundary Element Method. Various absorbing layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the spurious wave reflections especially in some difficult cases such as shallow numerical models or grazing incidences. Finally, strong earthquakes involve nonlinear effects in surficial soil layers. To model strong ground motion, it is thus necessary to consider the nonlinear dynamic behaviour of soils and simultaneously investigate seismic wave propagation in complex 2D/3D geological structures! Recent advances in numerical formulations and constitutive models in such complex situations are presented and discussed in this paper. A crucial issue is the availability of the field/laboratory data to feed and validate such models.Comment: of International Journal Geomechanics (2010) 1-1

    An atypical cyclin-dependent kinase controls Plasmodium falciparum proliferation rate

    Get PDF
    Malaria parasites multiply in human erythrocytes through schizogony, a process characterised by nuclear divisions in the absence of cytokinesis, leading to the formation of a multinucleated schizont from which individual daughter cells are subsequently generated. Here, we provide evidence that parasites lines lacking Pfcrk-5, an atypical cyclin-dependent kinase, display a reduced parasitemia growth rate linked to a decrease in the number of daughter nuclei produced by each schizont. We show that in vitro activity of recombinant Pfcrk-5 is indeed cyclin-dependent and that the enzyme localises to the nuclear periphery. Thus, Pfcrk-5 is part of a regulatory pathway that mediates the proliferation rate of Plasmodium falciparum through the control of nuclear divisions during schizogony

    Identification of Plasmodium falciparum var1CSA and var2CSA domains that bind IgM natural antibodies

    Get PDF
    Malaria in pregnancy is responsible for maternal anaemia, low-birth-weight babies and infant deaths. Plasmodium falciparum infected erythrocytes are thought to cause placental pathology by adhering to host receptors such as chondroitin sulphate A (CSA). CSA binding infected erythrocytes also bind IgM natural antibodies from normal human serum, a process that may facilitate placental adhesion or promote immune evasion. The parasite ligands that mediate placental adhesion are thought to be members of the variant erythrocyte surface antigen family P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the var genes. Two var gene sub-families, var1CSA and var2CSA, have been identified as parasite CSA binding ligands and are leading candidates for a vaccine to prevent pregnancy-associated malaria. We investigated whether these two var gene subfamilies implicated in CSA binding are also the molecules responsible for IgM natural antibody binding. By heterologous expression of domains in COS-7 cells, we found that both var1CSA and var2CSA PfEMP1 variants bound IgM, and in both cases the binding region was a DBL epsilon domain occurring proximal to the membrane. None of the domains from a control non-IgM-binding parasite (R29) bound IgM when expressed in COS-7 cells. These results show that PfEMP1 is a parasite ligand for non-immune IgM and are the first demonstration of a specific adhesive function for PfEMP1 epsilon type domains
    corecore