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INTRODUCTION

Malaria parasites are apicomplexan protists of the genus 

Plasmodium, five species of which infect humans. Their life 

cycle is complex and involves shuttling between the human host 

and an Anopheles mosquito vector. Plasmodium sporozoites are 

injected into the host by the insect during a blood meal and gain 

the liver, where a first round of schizogony occurs, producing 

merozoites that are geared to invade erythrocytes. Asexual 

proliferation by schizogony in the red blood cell is the phase of 

the life cycle that is responsible for malaria pathogenesis. The 

parasite is transferred back to the mosquito through male and 

female gametocytes, which are cell cycle-arrested, sexually 

differentiated cells that develop in a fraction of the invaded 

erythrocytes. Upon ingestion by the insect, the gametocytes 

complete their development into gametes, and the endpoint 

of the sexual cycle in the mosquito is the accumulation of 

sporozoites in the mosquito’s salivary glands, where they are 

primed for infection of a new human host. 

Despite a significant decrease in global mortality caused by 

malaria in recent years, which was in part brought about by the 

introduction of arteminisin-based combination therapies (ACT), 

this disease still takes almost a million lives every year, and 

significantly impairs socio-economic development in many parts 

of the developing world [1]. In view of the worrying emergence of 

decreased susceptibility to ACT in Plasmodium falciparum, the 

species responsible for the most virulent form of human malaria, 

developing novel chemotherapeutic agents remains an urgent task 

[1,2]. The central role played by protein phosphorylation in essentially 

all complex processes in eukaryotic cells, and the success in 

targeting eukaryotic protein kinases (ePKs) in cancer chemotherapy 

[3], point to the divergent protein kinases of malaria parasites as 

potentially attractive, druggable targets for novel antimalarials 

with new modes of action [4,5]. The parasite’s kinome comprises
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Abstract
Malaria parasites multiply in human erythrocytes through schizogony, a 
process characterised by nuclear divisions in the absence of cytokinesis, 
leading to the formation of a multinucleated schizont from which individual 
daughter cells are subsequently generated. Here, we provide evidence 
that parasites lines lacking Pfcrk-5, an atypical cyclin-dependent kinase, 
display a reduced parasitemia growth rate linked to a decrease in the 
number of daughter nuclei produced by each schizont. We show that 
in vitro activity of recombinant Pfcrk-5 is indeed cyclin-dependent, and 
that the enzyme localises to the nuclear periphery. Thus, Pfcrk-5 is part 
of a regulatory pathway that mediates the proliferation rate of Plasmodium 
falciparum through the control of nuclear divisions during schizogony.
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invading merozoite is thought to be in G0, and the early stage 

of development immediately following invasion of the RBC (the 

so-called ring stage) corresponds to the G1 phase of the cell 

cycle. S phase is initiated at the trophozoite stage, around 18 

hours post invasion. Thereafter, nuclear divisions occur in the 

absence of cytokinesis, resulting in a multinucleated schizont. 

Interestingly, these nuclear divisions occur asynchronously, 

as demonstrated by the presence of mitotic spindles at 

various stages of development in the same schizont, and by a 

distribution of nuclei numbers per schizont that is incompatible 

with synchronous divisions [31,32]. This was recently confirmed 

by the observation that at any given time, only a subset of nuclei 

in a given schizont display association of an Aurora-related 

kinase with the spindle pole bodies, and are thus at a distinct 

phase of the division cycle [33].  

Understanding the molecular basis for the slow growth 

phenotypes of PfPK7 and Pfcrk-5 would provide useful insights 

into cell cycle control in malaria parasites, and might reveal 

parasite-specific potential targets for intervention. Here, we 

demonstrate that Pfcrk-5 is indeed and cyclin-dependent kinase, 

and that is is located at the nuclear periphery. We show that the 

slow growth phenotype of pfcrk-5- parasites is caused by a lower 

average number of daughter merozoites produced by schizonts, 

exactly mimicking the PfPK7 phenotype. This paves the way for 

in-depth molecular studies of cell proliferation in malaria parasites.

EXPERIMENTAL PROCEDURES

Parasite culture and transfection
The 3D7 clone of P. falciparum was grown as described at 

5% haematocrit in 5% CO2 [34] and used for all experiments. 

Ring-stage parasites obtained by sorbitol treatment [35] were 

transfected with 100mg plasmid, and blasticidin selection

(2.5 µg/ml) was applied from 2 days post transfection and 

maintained continuously. Gametocytogenesis induction was 

carried out as described by Carter et al. [36].

Molecular cloning of Pfcrk-5 and site-directed 
mutagenesis
The full-length Pfcrk-5 ORF (2118 bp) was amplified by 

PCR from a cDNA asexual library with Phusion Polymerase 

and cloned in the bacterial expression vector pGEX4T3 

between the BamH1 and Sal1 sites, using the following 

primers (restriction sites are underlined): Forward: 

5’-GGGGGGATCCATGTTTGGAATTACATTAACAAAGTG-3’; Reverse: 

5’-GGGGGTCGACTTAAAAATGAGAAAATTCTAGATGAC-3’. 

The construct was verified by DNA sequencing prior to 

bacterial expression in E. coli. A plasmid encoding a kinase-

dead mutant enzyme (Lysine 38 to Methionine) was obtained 

by site directed mutagenesis using the overlap extension 

PCR technique [37] using the following primers containing the 

mutation: Forward: 5’-GTTTATGCCATAATGTTTTTTCGAGAC-3’; 

Reverse: 5’-GTCTCGAAAAAACATTATGGCATA-3’. The plasmid 

was sequenced to verify that no additional mutations had been 

generated during the PCR.

85-99 enzymes, depending on the stringency for inclusion applied 

to borderline sequences [6-8]. If one excludes the FIKKs, a novel, 

apicomplexan-specific family of 20 ePK-like sequences [6,9], 

the most numerous kinase group in the parasite’s kinome is the 

18-member strong CMGC group (CDK, MAPK, GSK and CDK-like), 

which in other eukaryotes comprises enzymes playing central roles 

in the control of cell proliferation and development.

The cyclin-dependent kinases (CDKs) constitute a large 

ubiquitous family of ePKs fulfilling regulatory functions [10], and 

which are the targets of numerous drug discovery initiatives 

(reviewed in [11-13]). Mammalian CDK1-4 and CDK6 control 

cell cycle progression, while CDK5 is involved in neuronal 

functions [14]. CDK8-11 regulate gene expression through 

a variety of effectors, including RNA polymerase II, other 

transcriptional proteins and the mRNA splicing machinery 

[15-18]. CDK7 plays crucial roles in both cell cycle control 

and transcription, notably through its CDK-activating kinase 

(CAK) activity, through which it phosphorylates other CDKs in 

their activation loop [19]. The activity of CDKs is regulated in a 

number of ways, including activation by cyclin binding, inhibitory 

or stimulatory phosphorylation / dephosphorylation by specific 

kinases (including CAKs) and phosphatases, and inhibition 

by polypeptidic inhibitors (CKIs).  The 18 P. falciparum CMGC 

kinases include six enzymes that are more related to CDKs than 

to other families in the CMGC group [6,20]. Demonstration of 

cyclin-dependence has been provided for two of those, PfPK5 

[21] and Pfmrk [22], the putative homologues of CDK1 and 

CDK7, repsectively, and we previously identified four genes 

encoding cyclin-related proteins in the parasite’s genome [21,23]. 

Biochemical characterization has been published for five of the 

parasite’s six CDK-related kinases: PfPK5 is the only plasmodial 

enzyme that clusters with the mammalian cell cycle CDKs, while 

Pfcrk-1 and Pfcrk-3 cluster with the transcriptional CDKs [24]; 

in line with these phylogenetic observations, Pfcrk-3 has been 

shown to interact with chromatin modification enzymes [24]. 

As mentioned above, Pfmrk was identified as a putative CDK7 

homologue [25]. In addition to these four classical-looking CDKs, 

the P. falciparum CMGC group includes a branch comprising 

two unique sequences that are clearly related to CDKs but have 

no orthologues in the mammalian kinome. These are PfPK6, a 

kinase that displays cyclin-independent activity in vitro [26], and 

an as yet uncharacterized atypical enzyme, Pfcrk-5 (PlasmoDB 

accession number PFF0750w / PF3D7_0615500). We showed 

in a recent kinome-wide reverse genetics analysis that parasite 

lacking Pfcrk-5 are viable, but display a decreased rate of 

proliferation in human erythrocytes [27]. This is similar to the 

phenotype we observed in parasites deficient in another kinase, 

the atypical enzyme PfPK7 [28]. The slow proliferation rate of 

pfpk7- parasites is linked, not to a longer schizogonic cycle, but 

to a decreased number of daughter merozoites generated per 

schizont, implicating PfPK7 in the control of the unusual cell 

cycle exhibited by Plasmodium erythrocytic schizogony [28]. 

The cell cycle organization during this phenomenon 

(reviewed in [29,30]) is indeed widely divergent from that in 

model eukaryotes such as yeast or mammalian cells. The 
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genomic DNA, using the following primers: Forward: 

5’-GGCTGCAGCGTTAATTCTTTAGGTAAACC-3’; Reverse: 

5’-CCTGGATCCAAAATGAGAAAATTCTAGATGAC-3’, containing 

PstI and BamH1 restriction sites, respectively (underlined), which 

allowed insertion of the amplified product into pCAM-BSD-HA. 

Transfection of wild-type 3D7 parasites, selection under 

blasticidin treatment and dilution cloning were performed as 

described above for the knock-out parasite line.

Genotype characterisation of Pfcrk-5 gene disruption
PCR: For PCR detection of (i) integration at the 5’ and 3’ 

flanks of the insert in the recombined locus, (ii) the wild-

type locus and (iii) the episome, various primer combinations 

were used to amplify PCR products from genomic DNA 

obtained from transgenic or wild-type parasites. Primer 1: 

5’-GGGGGGATCCATGTTTGGAATTACATTAACAAAGTG-3’; 

primer 2: 5’-tattcctaatcatgtaaatcttaaa-3’; 

primer 3: 5’-caattaaccctcactaaag-3’; primer 4: 

5’-CGACCATGTAATTTTACTTCTAC-3’. Primers 1 and 4 hybridise 

to pfcrk-5 sequences, while primers 2 and 3 correspond to 

pCAM-BSD vector sequences flanking the insertion site (see 

Figures 1 and 3 for primer location).

Southern Blotting: Genomic DNA (gDNA) from wild-type 

3D7 and Pfcrk-5 KO parasites was obtained as followed: 

parasite pellets obtained by saponin lysis were treated with 

150 mg/ml Proteinase K and 2% SDS at 55°C for 2 hours. The 

DNA was precipitated with ethanol and 0.3 M sodium acetate 

after phenol/chloroform/isoamyl alcohol (25:24:1) extraction. 

5 mg of gDNA were then digested with Nsi1 or with Pst1 and 

Swa1, fractionated on a 0.8 % agarose gel and transferred 

onto a Hybond N+ membrane. PCR amplicons from either 

the pfcrk-5 (the same fragment as that had been inserted into 

pCAM-BSD, see above) or the bsd gene were used as probes, 

and chemoluminescence detection was performed following the 

manufacturer’s recommendations (Amersham).

Genotype characterisation of Pfcrk-5 HA tagging
PCR: For the detection of integration at the 5’ and 3’ 

boundaries of the pCAM-BSD-HA-Pfcrk-5 plasmid, of the 

episome and of the wild locus, the following  primers were 

used (see Supplementary Figure  S3 for primer combinations 

and locations): Primer 1: 5’-TAACCACAATTGGAGTCGTCG-3’; 

Primer 2: 5’-TATTCCTAATCATGTAAATCTTAAA-3’  ; 

Primer 3 : 5’-CGAACATTAAGCTGCCATATCC-3’  ; 

Primer 4  : 5’-CAATTAACCCTCACTAAAG-3’; Primer 5: 

5’-CAAAAATGTTTTGTTTACATCC-3’.

Southern Blotting: Southern blot was performed as described 

above, except that genomic DNA extracted from wild-type 3D7 

and from Pfcrk-5-HA transgenic parasites was digested with 

Cla1 and Nco1. 

Anti-Pfcrk-5 antibodies
To obtain chicken IgYs, a peptide (SLGKPNKDELEFFSNSR) 

was selected from the Pfcrk-5 amino-acid sequence using the 

Predict7 program, synthesized with an additional C-terminal 

Generation of Pfcrk-5- parasite by gene disruption
A 507 bp DNA fragment spanning nucleotides 88 to 795 of  

the Pfcrk-5 ORF was cloned into the pCAM-BSD 

vector carrying a blasticidin-resistance cassette [38] 

after PCR amplification from wild-type 3D7 genomic 

DNA using the following oligonucleotides: Forward: 

5’-GGGGGGATCCACCTATGGTGACGTGTACAAAGGG-3’; Reverse: 

5’-GGGGGCGGCCGCCAAAGGTCGGTAATATATTGTACAAAC-3’, 

containing BamH1 and Not1 restriction sites, respectively 

(underlined). Transfection was carried out as described above. 

Resistant parasites appeared after 4 weeks of blasticidin 

selection. After verifying by PCR that the desired genotype 

was well represented in the resistant population, the resistant 

parasites were cloned by limiting dilution in 96-well plates by 

seeding at 0.25, 0.5 and 1 parasite per well [39].

Expression and purification of GST-Pfrk-5 and cyclins
Pfcrk-5, Pfcyc-1, Pfcyc-2 and Pfcyc-4 [23] were purified as GST 

fusion proteins. Briefly, pGEX4T3 fusion constructs were used 

for protein expression in BL21 (DE3) codon plus cells in the 

presence of ampicillin (50 µg/ml) and chloramphenicol (25µg/ml). 

The cultures, at O.D. ~0.4, were induced with 0.5 mM IPTG and 

further incubated at 22oC for 6 hours. After induction, cells were 

harvested and the pellet was stored at –80oC. For the purification 

of recombinant protein, cells were further lysed at 4oC in lysis 

buffer (1xPBS, 10 mM DTT, 2 mM EDTA, 100 µM PMSF and 1 

mg/ml lysozyme). The lysate was sonicated and incubated at 

4oC with 0.1% Triton X-100 for 1 hour at 4oC. Supernatant was 

clarified by high-speed centrifugation. Soluble fraction of the 

protein was further incubated with pre-equilibrated Glutathione-

sepharose 4B beads (Amersham) at 4oC for 1 hour. Unbound 

protein was separated by the centrifugation and protein bound 

beads were washed with lysis buffer containing 150 mM NaCl. 

Proteins were eluted with elution buffer containing 50mM Tris-

HCl (pH 8.0), 10 mM DTT, 20 mM Glutathione, 0.1% NP-40, 10% 

Glycerol and 100 mM NaCl. Purified proteins were dialyzed and 

stored at -80oC. 

Pfcyc-3 and Ringo were expressed as MBP fusion proteins. 

Briefly, pMALc2x fusion constructs were expressed in BL21 (DE3) 

codon plus cells in the presence of ampicillin (50µg/ml) and 

chloramphenicol (25µg/ml). Induction conditions and harvesting 

were similar to the GST-fusion protein purification described above. 

Cells were re-suspended in lysis buffer containing 20 mM Tris-HCl 

(pH 8.0), 200 mM NaCl, 1 mM EDTA, 10 mM ß-mercaptoethanol, 

100 µM PMSF and 1 mg/ml lysozyme. The lysate was sonicated 

and incubated at 4oC with 0.1% Triton X-100 for 1 hr at 4oC. 

Cell debris were removed by high-speed centrifugation and the 

soluble fraction was incubated in the presence of pre-equilibrated 

amylose resin at 4oC for 1 hour. Following incubation, the resin 

was washed with lysis buffer, and the fusion protein was eluted 

with lysis buffer containing 10 mM maltose.

Generation of parasite lines expressing HA-tagged Pfcrk-5
The 3’ end of the Pfcrk-5 coding region (856 bp, 

omitting the stop codon) was amplified by PCR from 
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described above for IgY generation, and monospecific rabbit 

antibodies were immunopurified against the peptide.

Western blotting
Parasites from synchronous cultures were lysed by brief 

sonication in lysis buffer (50 mM Tris pH 8, 150 mM NaCl, 

cysteine (for coupling with MBS), coupled to rabbit albumin 

carrier and injected into chickens. Anti-peptide antibodies were 

isolated and affinity purified using the peptide coupled to a 

Sulpholink (Pierce) affinity matrix as described previously [40].

Rabbit antibodies were produced by Biogene (Germany). 

Rabbits were immunized with the Pfcrk-5-derived peptide 

Figure 1. �Bioinformatics analyses.
A. Alignment of the Pfcrk-5 kinase domain with that of human CDK2 (CAA43985) and those of other P. falciparum CDK-related sequences: 
PfPK6 (MAL13P1.185/ PF3D7_1337100), Pfcrk-3 (PFD0740w/ PF3D7_0415300), PfPK5 (MAL13P1.279/ PF3D7_1356900), Pfcrk-1 
(PFD0865c/ PF3D7_0417800) was performed with an on-line version of ClustalW2 available on the European Bioinformatics Institute’s web 
site (http://www.ebi.ac.uk/Tools/msa/clustalw2) using default parameters (Protein Weight Matrix: Gonnet, Gap Open cost: 10, Gap Extension: 
0.1 for pairwise alignment and 0.2 for multiple sequence alignment). To improve alignment accuracy, large non-conserved regions of the 
kinase sequences were removed (residues 499 to 658, and 274 to 381 for Pfcrk-3, and Pfcrk-5 respectively). Points of sequence deletion are 
labelled with a blue (-). Ranges of aligned residues are indicated after each protein name. Colours are used in addition to classical markings to 
visualize conserved residues: Red/(*) for identity, orange/(:) for strong conservation and yellow/(.) for weak conservation. The 11 subdomains 
of the kinase catalytic domain are indicated with black bars and roman numbers above the sequences. 
B. Cladogram view of a phylogenetic tree built from an equivalent alignment except that the entire kinase domain was used for each protein. 
Also, the PfPKA kinase domain (PFI1685w/ PF3D7_0934800) was added as an outlier to emphasize the global similarity between the 
other kinases. The EBI phylogeny tool (http://www.ebi.ac.uk/Tools/phylogeny/clustalw2_phylogeny) was used with default parameters and 
Unweighted Pair Group Method Arithmetic mean as clustering method.
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done with Softworx 5.0.0. Fiji and Adobe Photoshop CS5 were 

used for further image handling.

Kinase assays
The assays were performed in a standard reaction (30 µl) 

containing 25 mM Tris-HCl pH7.5, 20 mM MgCl2, 2 mM MnCl2, 

10 mM NaF, 10 mM b-glycerophosphate, 10 µM ATP, 5 µCi 

[γ-32P]ATP (6000 Ci/mmol, Perkin Elmer) and 5 µg of Histone H1 

(Invitrogen). The kinase reactions were carried out 30 min at 30°C 

and were stopped by addition of Laemmli buffer, boiled for 3 min 

and analyzed by electrophoresis on 10% SDS-polyacrylamide 

gel. The gels were dried and exposed for autoradiography.

Flow cytometry
Highly synchronous parasite culture aliquots (3 μl) were stained 

with 0.5 μg/mL Acridine Orange (Molecular Probes) in PBS, and 

the fluorescence profiles of infected erythrocytes were analysed 

on a BD FACS Canto flow cytometer (BD Biosystems). The cell 

cycle data were fitted to exponential sine wave equation in 

GraphPad Prism 5.0.

RESULTS

Bioinformatics
The 705-residue, 82 kDa polypeptide predicted from the single-

exon pfcrk-5 open reading frame contains a predicted kinase 

catalytic domain (Pfam number PF00069, e-value 1.6e-53) that 

possesses all the invariant amino-acids known to be crucial for 

protein kinase activity (Figure 1A). The Pfcrk-5 catalytic domain 

carries several insertions located between conserved motifs: a 

29-residue insertion between subdomains I and II, a 40-residue 

insertion between subdomains III and IV (which is the site of 

similar insertions in the plasmodial CDK-related kinases PfPK6 

and Pfcrk-3), an 8-residue insertion between subdomains 

V and VI (also shared by Pfcrk-3), a short unique 5-residue 

insertion between subdomains VIb and VII, and finally a unique 

insertion (111 residues) that is very rich in charged amino acids 

between subdomains VIII and IX. In addition, it also displays 

a 206-residue C-terminal extension. Talevich et al. identified a 

novel PTxC motif in the Pfcrk-5 activation loop, which is absent 

from all CDKs outside Apicomplexa [8]. BLASTP analysis using 

the Pfcrk-5 sequences as a query retrieved members of the 

cyclin-dependent kinase family as top scores (not shown). Our 

initial phylogenetic analysis comprising all plasmodial, yeast 

and human CMGC kinases [6] suggested that: (i) the closest

P. falciparum kinase to Pfcrk-5 is PfPK6, a previously 

described “composite” kinase with similarities to both CDKs 

and mitogen-activated protein kinases (MAPKs), and whose 

activity is cyclin-independent [21,26]; and (ii) the Pfcrk-5/PfPK6 

branch does not contain orthologues in the yeast or human 

kinomes. The apicomplexan-specificity of the PfPK6 and 

Pfcrk-5 orthologous groups was confirmed in the context of an 

extensive phylogenetic analysis [44]. The phylogenetic analysis 

presented in Figure 1B confirms the close relatedness between 

Pfcrk-5 and PfPK6. 

25 mM MgCl2, 1% Triton, 0.5% NP40, 0.1 mM PMSF, Boehringer 

protease inhibitors cocktail). The extracts (normalised per 

protein concentration) were fractionated by SDS-PAGE and 

blotted onto nitrocellulose. Immunoblotting was carried using a 

rabbit anti-Pfcrk-5 immunopurified antibody (1/400) and a goat-

anti rabbit secondary antibody coupled to peroxidase (1/10000). 

Immunodetection was performed by chemiluminescence using 

the ECL system according to the manufacturer’s recommended 

procedure (Amersham). A rabbit anti-Pf Peroxiredoxin antibody 

(1/4000) was used as a loading control.

Immunoprecipitation
Parasite pellets were sonicated in RIPA buffer (30 mM Tris 

pH 8.0, 150 mM NaCl, 20 mM MgCl2, 1 mM EDTA, 1 mM 

dithiothreitol, 10 µM ATP, 0.5% Triton X-100, 1% Nonidet P-40, 

10 mM b-glycerophosphate, 10 mM NaF, 0.1 mM sodium 

orthovanadate, 1 mM phenylmethylsulfonyl fluoride, and 

ComplexTM protease inhibitors). Cold ATP (10 mM) was added 

to the lysis buffer when immunoprecipitation was to be coupled 

to a kinase activity assay. The parasite extract (300 µg) was 

incubated with either immunopurified anti-Pfcrk-5 chicken IgY 

(4 µg) or with immunopurified anti-Pfcrk-5 rabbit antibody (5 mg) 

for 2 h at 4°C. The immunocomplexes were precipitated either 

with 20 ml of a 50% slurry of Protein A-Sepharose CL4B beads 

coated with anti-chicken IgY rabbit antibodies (Pierce), or with 

Protein G sepharose beads (Santa Cruz), and washed four times 

with RIPA buffer. An immunopurified chicken IgY against the 

human C5a receptor was used as a negative control.

For HA immunoprecipitation, extracts from wild-type 3D7 

and from parasites expressing HA-tagged Pfcrk-5 were prepared 

using the Profound anti-HA Tag IP/Co-IP Kit (Thermoscientific) 

according to the manufacturer’s protocol. 10 mg of mouse anti-

HA antibody immobilized on beads (6 ml of beads) were added 

to both lysates for 2hrs at 4°C. 20 ml of a 50% slurry of Protein 

G sepharose beads were added prior to washing steps, which 

were carried out as described above. The immunoprecipitated 

material was used in kinase assays and/or western blot 

experiments.

Immunofluorescence assay
IFAs were conducted as described previously [41]. Briefly, cells 

were fixed in 4% paraformaldehyde/0.075% glutaraldehyde 

(E.M grade ProSciTech) for 30 minutes at room temperature. 

Membranes were permeabilised with 0.1% Triton for 10 minutes 

at room temperature and cells were blocked in 3% BSA-PBS 

for 1 hour. Cells were incubated successively with primary and 

secondary antibodies for 1 hour at room temperature. Cells were 

mounted on a coverslip with Vectashield (Vector laboratories) 

and DAPI (2 mg/ml). Antibody dilutions were as follow: Rat anti-

HA (1/100, Roche), Mouse anti-a-tubulin (1/100, Sigma), Rabbit 

anti-PK7 (1/150) [42], Rabbit anti-CenPA and Rabbit anti-Nup100 

(1/100) [43], Alexa-488, -594 and -647 (1/1000, Molecular 

Probes). Samples were examined with a DeltaVision Elite 

deconvolution microscope (Applied Precision). Deconvolution, 

maximum projection analysis and 3D volume reconstitution were 
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Kinase activity of recombinant and native Pfcrk-5
When assayed against histone H1 (a classical CDK substrate), 

a GST fusion protein comprising the entire coding region of 

Pfcrk-5 did not display any activity (data not shown). This is 

to be expected from the fact that Pfcrk-5 belongs to the CDK 

family, members of which require binding of a cyclin to become 

active (although it must be noted here that PfPK6, the plasmodial 

kinase most closely related to Pfcrk-5, does indeed possess 

cyclin-independent activity [26]). The activity of GST-Pfcrk-5 

against histone H1 was then tested in the presence of various 

recombinant cyclins (Pfcyc-1 [21], Pfcyc-3 [23] , Pfcyc-4 [23] 

and Ringo [23,46]), and we observed that Pfcyc-1 and Pfcyc-4 

were able to activate the kinase (Figure  3A). A kinase-dead 

mutant (GST-Pfcrk-5/K78M) did not yield any signal in these 

conditions (Supplementary Figure  S2), demonstrating that the 

activity was indeed due to Pfcrk-5. Immunoprecipitated material 

obtained from parasite extracts with the anti-Pfcrk-5 antibody 

possessed strong histone H1 kinase activity, while the controls 

(immunoprecipitates obtained with pre-immune serum or 

an irrelevant antibody) did not (Figure  3B). The activity of the 

native immunoprecipitated was much stronger than that of the 

recombinant protein, despite much lower amount of the protein 

in the assay. This presumably reflects that fully activated Pfcrk-5 

was immunoprecipitated, while the recombinant protein was not 

in a fully active configuration, either because the proper cyclin 

was not present, or because additional activation steps (such 

Expression of Pfcrk-5 in blood stages
Microarray data available on PlasmoDB [45] show that Pfcrk-5 

mRNA is present throughout the erythrocytic asexual cycle, 

as well as in gametocyte and sporozoites. PCR from genomic 

DNA and from cDNA libraries from both asexual parasites and 

gametocytes using primers located at the predicted start and 

stop codons yielded a 2.1kb amplicon in all cases, indicating 

that the transcript is not spliced (Figure  2A).  Proteomic data 

available on PlasmoDB detected several Pfcrk-5 peptides in 

mature gametocytes only; the absence of detection from other 

stages may reflect low-level expression of the protein. To verify 

that the enzyme is indeed expressed in asexual parasites, 

we raised antibodies against a Pfcrk-5-derived peptide and 

performed western blot analysis of protein extracts from asexual 

parasites and gametocytes, detecting the expected 82kDa band 

in both extracts (Figure 2B, lane 1 and 2). This band could be 

immunoprecipitated from mixed asexual stages with the same 

antibody (Figure 2C, lane 2), but not with the pre-immune serum 

(Figure 2C, lane 1). Western blot analysis performed on protein 

extracts from synchronized cultures of rings, trophozoites and 

schizonts and using a 2-Cys-peroxiredoxin antibody as a loading 

control detected Pfcrk-5 mostly in the later stages (Figure 2D), 

in line with the significantly greater mRNA steady-state levels 

at this stage (data available on PlasmoDB). A chicken IgY 

raised against the same Pfcrk-5 peptide gave the same results 

(Supplementary Figure S1).

Figure 2. �Expression pattern of Pfcrk-5. 
A. Amplification of the Pfcrk-5 coding region from 3D7 genomic DNA, and from cDNA libraries from asexual parasites and gametocytes using 
Pfcrk-5 specific primers. 100 ng of gDNA or cDNA were used. (-) indicates a negative control lane (no DNA or cDNA)
B. Western blot of blood stages using an anti-Pfcrk-5 antibody (upper panel). Lane 1, extract from asexual parasites; lane 2, extract from 
gametocytes. The lower panel is a loading control (anti-PFA0380w antibody).
C. Western blot of Pfcrk-5 immunoprecipitated from unsynchronised asexual stages. The following antibodies were used for 
immunoprecipitation: lane 1, pre-immune serum; lane 2, anti-Pfcrk-5 antibody.
D. Western blot of synchronised parasites using an anti-Pfcrk-5 antibody. Extracts were from: R, rings; T, trophozoites and S, schizonts. The 
lower panel shows an anti-2Cys-peroxiredoxin antibody loading control.
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populations by limiting dilution, and clones from each population 

(clones A3 and C1) were genotyped by PCR and Southern blot 

(Figure  S6B and S6C respectively). No wild-type locus bands 

were detected with either method, whereas bands that are 

as phosphorylation of a conserved residue in the T-loop) was 

not achieved in the experiments with recombinant proteins (see 

Discussion).

C-terminal tagging of the Pfcrk-5 locus
To generate tools for further experiments, we produced 

transgenic parasite lines expressing HA-epitope-tagged Pfcrk-5 

from the cognate locus (see Supplementary Figure  S3 for the 

strategy and genotyping of the clones). A western blot analysis 

of protein extracts from parental 3D7 and transgenic Pfcrk-5-HA 

lines, performed using a mouse anti-HA antibody and an anti-

PfNapL (PFL0185c) antibody as a loading control, yielded a band 

at the expected size only in transgenic parasites (Supplementary 

Figure  S4), indicating that the HA-tagged Pfcrk-5 protein is 

expressed in the transgenic line. As we observed in other cases 

of locus tagging [34], the wild-type was essentially lost after 

several months of continuous culture under blasticidin selection. 

Consistent with data in Figure  3B showing that a Pfcrk-5 

antibody can pull down a kinase activity, an immunoprecipitate 

obtained with the anti-HA antibody from transgenic (but not from 

wild-type) parasites contained strong histone H1 kinase activity 

(Figure 3C). Immunofluorescence microscopy of the transgenic 

line using the anti-HA antibody yielded a weak signal in rings and 

trophozoites (not shown) and a more intense signal in schizonts 

(Figure  4); no HA signal was detected in wild-type parasites 

(Figure 4E). At all stages Pfcrk-5-HA presents a dot-like pattern, 

with signal intensity increasing with parasite maturation. Pfcrk-5 

clearly resides in the nuclear periphery, as evidenced by the 

observation that Pfcrk-5 dots are always within the boundaries 

defined by the CenPA and Nup100 markers of nuclear periphery 

(Supplemental Figure  S5 and Movies S5A and S5B), although 

strict co-localisation with these proteins was not observed 

(Figure  4A and 4B). Furthermore, Pfcrk-5 does not associate 

with microtubules as show by the absence of co-localisation 

with a-tubulin (Figure 4C). Information on the Pfcrk-5 expression 

profile derived from IFA is fully consistent with microarrays, 

proteomics and western blot data (Figure  2) showing highest 

level of this CDK in mature asexual stages. 

A functional pfcrk-5 gene is not required for asexual 
growth
We transfected 3D7 parasites with a construct aimed at 

disrupting the pfcrk-5 locus, following a strategy that has 

been described in detail elsewhere ([47]; see Supplemental 

Figure S6 for details on the knock-out strategy and genotyping 

of the knock-out clones). Briefly, homologous recombination 

of the plasmid into the pfcrk-5 locus is expected to result in a 

pseudo-diploid configuration, with both truncated copies lacking 

essential residues. After two independent transfections, the 

pfcrk-5 locus of blasticidin-resistant parasites was examined by 

PCR, which clearly demonstrated that the plasmid had integrated 

into the locus (Figure S6B, left panel; a succinct report of these 

experiments can be found in our recent report describing the 

kinome-wide reverse genetics approach [27]). We proceeded with 

obtaining individual clones from both independently transfected 

Figure 3. �Kinase activity of recombinant and native Pfcrk-5.
A. Kinase assays using recombinant proteins. In vitro kinase 
assays were performed using 0.5 µg of recombinant GST-
Pfcrk-5 and Histone H1 as a substrate with the following 
cyclin partners (0.5 µg to 1 µg): lane 2, GST-Pfcyc-2; lane 3, 
MBP-Pfcyc-3; lane 4, MBP-Ringo; lane 5, GST-Pfcyc-4. Top 
panel: autoradiogram following kinase reaction; bottom panel: 
Coomassie-stained gel. Pfcrk-5 phosphorylates Histone H1 in 
the presence of Pfcyc-1 and Pfcyc-4, but not in the presence 
of the other cyclins.
B. Kinase activity of native Pfcrk-5 immunoprecipitated from 
wild-type parasite extracts. An immunopurified chicken anti-
Pfcrk-5 IgY was incubated with a schizont protein extract (lane 
2). The immunocomplexes were pelleted with protein A-agarose 
beads and subjected to a kinase assay using Histone H1 as 
an exogenous substrate. A control reaction with the substrate 
alone was included (lane 1). Additional negative controls 
consisted of an immunoprecipitation with the same antibody 
from lysis buffer only (no parasite material) (lane 3) or with an 
irrelevant immunopurified IgY (against the human C5 receptor) 
(lane 4). The top panel shows the autoradiogramme, the bottom 
panel shows a Coomassie stain of the gel.
C. Kinase activity of HA-tagged Pfcrk-5 immunoprecipitated 
from transgenic parasite extracts using an anti-HA antibody. 
Lane 1, immunoprecipitation from an extract from wild-
type 3D7; lane 2, immunoprecipitation form an extract from 
transgenic parasites with an HA-tagged pfcrk-5 locus. The left 
panel shows the autoradiogramme, the right panel shows a 
Coomassie stain of the gel.
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rate of both KO clones in comparison to that of the 3D7 parental 

clone, we initially observed that the parasitemia growth rate 

was impaired in the pfcrk-5- parasites [27]. This study was 

repeated (Figure  6A) and extended by investigations into the 

mechanism underpinning the slow growth rate. In particular, 

we were intrigued by the similarity in the wild-type/KO growth 

rate ratios for pfcrk-5- parasites (this study) and for parasite 

clones lacking another kinase, PfPK7, which also increased their 

parasitemia at approximately half the rate of wild-type parasites 

[28]. The slow growth of PfPK7- parasites is caused by a 

decrease in the number of merozoites generated per segmenter 

[28]. Microscopic observation of segmenters from parental 

and pfcrk-5- parasites pointed to a decrease in the number of 

nuclei per schizont in the KO clones, suggesting that a smaller 

progeny underpins the growth phenotype for these parasites, 

diagnostic for locus disruption were very clear in both clones. We 

verified the absence of the Pfrck-5 protein in the pfcrk-5- clones 

by western blot. Figure  5A shows the data for clone C1; the 

same was observed with clone A3, using a chicken IgY (data not 

shown); consistently, no kinase activity was pulled-downed with 

the anti-Pfcrk-5 antibody from the pfcrk-5- parasites (Figure 5B). 

These experiments, in addition to validating the KO clones as 

unable to express Pfcrk-5 to a detectable level, also provide an 

excellent control for the experiments in Figure 3.

Proliferation rate phenotype of pfcrk-5- clones. 
Our success in obtaining pfcrk-5- parasites strongly suggested 

that parasites are viable in the absence of a pfcrk-5 gene, and 

hence that the enzyme is dispensable for completion of the 

erythrocytic asexual cycle. However, by monitoring the growth 

Figure 4. �Detection of HA-Pfcrk-5 by immunofluorescence microscopy. IFAs of asynchronous asexual transgenic Pfcrk-5-HA (A – D) and wild-type 3D7 
(E) parasites. A. anti-HA and anti-CenPA. B. anti-HA and anti-Nup100. C. anti-HA and anti-a-tubulin. D. anti-HA and anti-PK7. E. anti-HA 
and anti-a-tubulin.
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enzymes in these systems [6,8] and is part of an orthologous group 

that is specific to Apicomplexa [44]) make it impossible to predict 

precise cellular functions for Pfcrk-5. We show here that Pfcrk-5 is 

part of a regulatory pathway that controls the number of merozoites 

in schizont progeny, as pfcrk-5- schizonts produce fewer nuclear 

bodies (and hence, most presumably fewer daughter merozoites) 

than wild-type parasites. This is strikingly similar to the phenotype 

that we reported earlier for PfPK7, an “orphan” kinase that has no 

orthologues outside Apicomplexa. That both Pfcrk-5 and PfPK7 

are enzymes found only in apicomplexan parasites is consistent 

with their involvement in a cellular process (schizogony) that is not 

shared by yeast or mammalian cells. 

Pfcrk-5 clearly clusters within the CDK family, but forms 

a distinct branch therein that also contains PfPK6, a cyclin-

independent enzyme thought to be involved in the onset of 

S-phase in the trophozoite [26], but no human or yeast sequences 

[6]. Here we show that in contrast Pfcrk-5 does require cyclin 

binding to become active. We were not able to predict this on 

the basis of the cyclin-binding motif, which is PSTAIRE in CDK2 

and is substituted by SCTTLRE in Pfcrk-5 and SKCILRE in 

PfPK6. Two of the four identified P. falciparum cyclins are able 

to activate recombinant Pfcrk-5 in vitro. However, the specific 

activity in these conditions is much smaller than that observed 

with Pfcrk-5 obtained by immunoprecipitation from parasite 

extracts. This most likely reflects the fact that a full activity is 

not obtained with the recombinant CDK/cyclin complex. It is well 

established that cyclin binding only partially activates canonical 

CDKs such as human CDK2. Cyclin binding renders a conserved 

threonine residue (Thr 160 in CDK2) in the activation loop 

accessible to phosphorylation by the CAK, which fully activates 

the enzyme [49]. The phosphothreonine acts as an organizing 

center that establishes electreostatic interactions with three 

as demonstrated for pfpk7- parasites (Figure  6B). To formally 

validate this observation, flow cytometry analysis based on 

DNA content [48] was applied to the mutant clones and parental 

wild-type 3D7, which showed that the proportion of schizonts 

with >16N DNA was considerably lower in the pfcrk-5- clones 

than in wild-type parasites (Figure 6C). Furthermore, measuring 

fluctuations of the percentage of parasites with >16N over two 

life cycles confirmed the lower proportion of parasites with 

many genomes, and, in addition, did not detect any significant 

difference in the length of the life cycle between wild-type and 

pfcrk-5- parasites (Figure 6D). Pfcrk-5 disruption does not seem 

to alter gametocytogenesis, as the morphology of pfcrk-5- 

male and female gametocytes did not display any obvious 

defect under admittedly superficial Giemsa-based microscopic 

examination (data not shown). The very close similarity between 

the PfPK7 [27] and Pfcrk-5 KO phenotypes raises the possibility 

that these two enzymes function in the same pathway. Although 

both kinases localize to the nuclear periphery, no co-localization 

was observed (Figure 4D) (see Discussion).

DISCUSSION

Cell cycle control in malaria parasites is far from being understood. 

One approach to fill this important gap in our knowledge of 

Plasmodium basic biology is to characterize the function of 

regulatory enzymes, which, by analogy with their known functions 

in other eukaryotes, are putative cell cycle control elements. This 

is the case for the P. falciparum CDK-related enzymes. Here we 

functionally characterize Pfcrk-5, the last of the six CDK-like 

enzymes encoded in the parasite’s genome to be investigated at 

the biochemical level. Its phylogenetic isolation from “classical” 

mammalian and yeast CDKs (it does not cluster with any of the 

Figure 5. �Pfcrk-5 expression and kinase activity in wild-type and pfcrk-5- parasites.
A. Western blot analysis. Top panel: Protein extracts (15 mg) from wild-type 3D7 (lane 1) and pfcrk-5- schizonts clone C1 (lane 2) were 
fractionated by SDS-PAGE, transferred and probed with an anti-Pfcrk-5 antibody. An anti-2Cys-peroxyredoxin antibody was used as a loading 
control (bottom panel). The sizes of co-migrating markers are indicated in kDa. 
 B. Immunoprecipitated kinase activity. An immunopurified chicken anti-Pfcrk-5 IgY was incubated with extracts from wild-type 3D7 or from 
pfcrk-5- parasites (clone C1). Immuno-complexes were recovered and subjected to a kinase reaction as described in the legend to Figure 3.
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unsuccessful in our attempts to identify co-precipitating 

proteins by mass spectrometry, presumably because of the 

low abundance of the enzyme (this approach generated useful 

results when applied to a more abundant protein kinase, PfCK2 

[52]). We are attempting scaling up the process for Pfcrk-5, 

as identifying interactors would provide useful insight not only 

about the cyclin(s) and other regulators of Pfcrk-5 activity, but 

also into the effectors of the enzyme’s action on nuclear division 

control. In view of the close similarity between the PfPK7 and 

Pfcrk-5 knock-out phenotypes, it would be of particular interest 

to determine whether the two enzymes interact with each other. 

Although no in vivo co-localisation of Pfcrk-5 and PfPK7 was 

observed in schizonts (Figure 4D), we cannot exclude a transient 

interaction between these two kinases at a specific point in the 

nuclear division cycle. Our preliminary results using recombinant 

proteins (data not shown) indicate that His-tagged PfPK7 

(but not another His-tagged kinase used as a control) can be 

pulled-down via GST-tagged Pfcrk-5 using glutathione beads, 

and, vice-versa, that GST-tagged Pfcrk-5 (but not another GST-

tagged kinase) can be pulled via His-tagged PfPK7 using nickel 

neighboring arginine residues (Arg50, Arg126 and Arg150), 

stabilizing the active, extended conformation of the T-loop [50]. 

The threonine and all three arginine residues are present in 

Pfcrk-5 (Figure 1A), suggesting this activation mechanism may 

be conserved. Although Pfcyc-1 and Pfcyc-4 are able to activate 

Pfcrk-5 to some extent in vitro, in the absence of any information 

to demonstrate that Pfcrk-5 forms complexes with cyclins within 

parasites, the physiological relevance of these observations 

remains uncertain. Furthermore, we cannot exclude that the 

in vivo activator is different from Pfcyc-1/Pfcyc-4, as the four 

cyclin-like proteins identified in P. falciparum may not be the only 

CDK activators encoded in the P. falciparum genome: non-cyclin 

CDK activators do actually exist in eukaryotic systems [51], and 

one can speculate that some of the “hypothetical proteins” that 

make up more than half the parasite’s proteome might have 

such a function. The cognate cyclin(s) and other regulatory 

proteins might be identified through an interactomics approach. 

We attempted to purify Pfcrk-5-containing complexes by 

immunoprecipitation of the HA-tagged enzymes from transgenic 

parasites using an anti-HA antibody, but so far we have been 

Figure 6. �Phenotype analysis of pfcrk-5- parasites.
A. Growth curve of wild-type 3D7 and of pfcrk-5-clones: Parasitemia of synchronous cultures were measured every 24 hrs by flow cytometry 
and average parasitemia is plotted against time for wild-type (circles) and knockout clone A3 (squares) and clone C1 (triangles). Error bars 
indicate the standard deviation of triplicate samples. 
B. Phenotype of schizonts: Giemsa-stained smear of schizont-stage parasites from wild-type culture and knockout clone A3. The “fewer 
merozoites per schizont” phenotype in the pfcrk-5- culture (versus wild-type 3D7) was observed in > 10 different fields of Giemsa-stained 
smears. 
C. DNA content of schizont stage parasites: fluorescence profiles of infected erythrocytes by flow cytometry analysis are shown. The 
fluorescence peak of wild-type 3D7 is much higher than that of knockout clones A3 and C1.
D. Parasite cycle time of wild-type and knockout clones: Parasitemia of highly synchronous cultures were measured by flow cytometry every 2 
to 3 hrs over two cycles. Out of the total parasitemia, the schizont stage population was selected and plotted as percent schizont with > 16N 
over time. The data were fit to an exponential sine wave equation and the resulting curves are shown with error bars indicating the standard 
deviation of triplicate samples. No difference in periodicity was observed between wild-type 3D7 and knockout clones.
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beads; the possible in vivo relevance of this observation remains 

to be established. 

Parasites lacking PfPK7 not only have a reduced proliferation 

rate during erythrocytic schizogony, but also are unable to 

develop from ookinete to oocyst in the mosquito vector [28]. 

Since the generation of sporozoites in the oocyst also represents 

a case of asexual proliferation (like erythrocytic schizogony), the 

molecular basis for both phenotypes might be similar. It would 

be of great interest to investigate the fate of pfcrk-5- parasites 

in the mosquito. The hypothesis they would display a similar 

oocyst phenotype to that of the PfPK7 knock-out is testable, 

since the lack of Pfcrk-5 does not interfere with the formation of 

mature gametocytes.
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