132 research outputs found

    Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure

    Get PDF
    Available online 22 September 2020BACKGROUND: In industrialized countries, non-communicable diseases have been increasing in prevalence since the middle of the 20th century. While the causal mechanisms remain poorly understood, increased population density, pollution, sedentary behavior, smoking, changes in diet, and limited outdoor exposure have all been proposed as significant contributors. Several hypotheses (e.g. Hygiene, Old Friends, and Biodiversity Hypotheses) also suggest that limited environmental microbial exposures may underpin part of this rise in non-communicable diseases. In response, the Microbiome Rewilding Hypothesis proposes that adequate environmental microbial exposures could be achieved by restoring urban green spaces and could potentially decrease the prevalence of non-communicable diseases. However, the microbial interactions between humans and their surrounding environment and the passaging of microbes between both entities remains poorly understood, especially within an urban context. RESULTS: Here, we survey human skin (nĀ =Ā 90 swabs) and nasal (nĀ =Ā 90 swabs) microbiota of three subjects that were exposed to air (nĀ =Ā 15), soil (nĀ =Ā 15), and leaves (nĀ =Ā 15) from different urban green space environments in three different cities across different continents (Adelaide, Australia; Bournemouth, United Kingdom; New Delhi, India). Using 16S ribosomal RNA metabarcoding, we examined baseline controls (pre-exposure) of both skin (nĀ =Ā 16) and nasal (nĀ =Ā 16) swabs and tracked microbiota transfer from the environment to the human body after exposure events. Microbial richness and phylogenetic diversity increased after urban green space exposure in skin and nasal samples collected in two of the three locations. The microbial composition of skin samples also became more similar to soil microbiota after exposure, while nasal samples became more similar to air samples. Nasal samples were more variable between sites and individuals than skin samples. CONCLUSIONS: We show that exposure to urban green spaces can increase skin and nasal microbial diversity and alter human microbiota composition. Our study improves our understanding of human-environmental microbial interactions and suggests that increased exposure to diverse outdoor environments may increase the microbial diversity, which could lead to positive health outcomes for non-communicable diseases.Caitlin A. Selway, Jacob G. Mills, Philip Weinstein, Chris Skelly, Sudesh Yadav, Andrew Lowe, Martin F. Breed, Laura S. Weyric

    Home Office Fingerprint Source Book

    Get PDF
    The Fingerprint Source Book is primarily intended to provide the background and validation for the techniques currently (up to 2016) recommended by the Home Office Centre for Applied Science and Technology (CAST), and to publish, in some cases for the first time, data collected over 45 years of research. It will therefore often present information in an ā€˜CASTcentricā€™ way, emphasising research that was carried out at Sandridge or Horseferry House, possibly sometimes at the expense of research carried out elsewhere. It is not the intention of the authors to ignore the significant contributions made by other research groups and apologies are made in advance if this sometimes appears to be the case. The document is also aimed at providing the UK Forensic Science Regulator and the United Kingdom Accreditation Service (UKAS), which has carried out ISO 17025 accreditation in the UK, with the background evidence behind the advice given in the Fingermark Visualisation Manual

    The Evolutionary Rewiring of Ubiquitination Targets Has Reprogrammed the Regulation of Carbon Assimilation in the Pathogenic Yeast \u3ci\u3eCandida albicans\u3c/i\u3e

    Get PDF
    Microbes must assimilate carbon to grow and colonize their niches. Transcript profiling has suggested that Candida albicans, a major pathogen of humans, regulates its carbon assimilation in an analogous fashion to the model yeast Saccharomyces cerevisiae, repressing metabolic pathways required for the use of alterative nonpreferred carbon sources when sugars are available. However, we show that there is significant dislocation between the proteome and transcriptome in C. albicans. Glucose triggers the degradation of the ICL1 and PCK1 transcripts in C. albicans, yet isocitrate lyase (Icl1) and phosphoenolpyruvate carboxykinase (Pck1) are stable and are retained. Indeed, numerous enzymes required for the assimilation of carboxylic and fatty acids are not degraded in response to glucose. However, when expressed in C. albicans, S. cerevisiae Icl1 (ScIcl1) is subjected to glucose-accelerated degradation, indicating that like S. cerevisiae, this pathogen has the molecular apparatus required to execute ubiquitin-dependent catabolite inactivation. C. albicans Icl1 (CaIcl1) lacks analogous ubiquitination sites and is stable under these conditions, but the addition of a ubiquitination site programs glucose-accelerated degradation of CaIcl1. Also, catabolite inactivation is slowed in C. albicans ubi4 cells. Ubiquitination sites are present in gluconeogenic and glyoxylate cycle enzymes from S. cerevisiae but absent from their C. albicans homologues. We conclude that evolutionary rewiring of ubiquitination targets has meant that following glucose exposure, C. albicans retains key metabolic functions, allowing it to continue to assimilate alternative carbon sources. This metabolic flexibility may be critical during infection, facilitating the rapid colonization of dynamic host niches containing complex arrays of nutrients

    Acquisition of a Unique Onshore/Offshore Geophysical and Geochemical Dataset in the Northern Malawi (Nyasa) Rift

    Get PDF
    The Study of Extension and maGmatism in Malawi aNd Tanzania (SEGMeNT) project acquired a comprehensive suite of geophysical and geochemical datasets across the northern Malawi (Nyasa) rift in the East Africa rift system. Onshore/offshore active and passive seismic data, longā€period and wideband magnetotelluric data, continuous Global Positioning System data, and geochemical samples were acquired between 2012 and 2016. This combination of data is intended to elucidate the sedimentary, crustal, and upperā€mantle architecture of the rift, patterns of active deformation, and the origin and age of riftā€related magmatism. A unique component of our program was the acquisition of seismic data in Lake Malawi, including seismic reflection, onshore/offshore wideā€angle seismic reflection/refraction, and broadband seismic data from lakeā€bottom seismometers, a towed streamer, and a large towed airā€gun source

    Evidence That Ca2+ within the Microdomain of the L-Type Voltage Gated Ca2+ Channel Activates ERK in MIN6 Cells in Response to Glucagon-Like Peptide-1

    Get PDF
    Glucagon like peptide-1 (GLP-1) is released from intestinal L-cells in response to nutrient ingestion and acts upon pancreatic Ī²-cells potentiating glucose-stimulated insulin secretion and stimulating Ī²-cell proliferation, differentiation, survival and gene transcription. These effects are mediated through the activation of multiple signal transduction pathways including the extracellular regulated kinase (ERK) pathway. We have previously reported that GLP-1 activates ERK through a mechanism dependent upon the influx of extracellular Ca2+ through L-type voltage gated Ca2+ channels (VGCC). However, the mechanism by which L-type VGCCs couple to the ERK signalling pathway in pancreatic Ī²-cells is poorly understood. In this report, we characterise the relationship between L-type VGCC mediated changes in intracellular Ca2+ concentration ([Ca2+]i) and the activation of ERK, and demonstrate that the sustained activation of ERK (up to 30 min) in response to GLP-1 requires the continual activation of the L-type VGCC yet does not require a sustained increase in global [Ca2+]i or Ca2+ efflux from the endoplasmic reticulum. Moreover, sustained elevation of [Ca2+]i induced by ionomycin is insufficient to stimulate the prolonged activation of ERK. Using the cell permeant Ca2+ chelators, EGTA-AM and BAPTA-AM, to determine the spatial dynamics of L-type VGCC-dependent Ca2+ signalling to ERK, we provide evidence that a sustained increase in Ca2+ within the microdomain of the L-type VGCC is sufficient for signalling to ERK and that this plays an important role in GLP-1- stimulated ERK activation

    Smoke, curtains and mirrors: the production of race through time and title registration

    Get PDF
    This article analyses the temporal effects of title registration and their relationship to race. It traces the move away from the retrospection of pre-registry common law conveyancing and toward the dynamic, future-oriented Torrens title registration system. The Torrens system, developed in early colonial Australia, enabled the production of ā€˜cleanā€™, fresh titles that were independent of their predecessors. Through a process praised by legal commentators for ā€˜curingā€™ titles of their pasts, this system produces indefeasible titles behind its distinctive ā€˜curtainā€™ and ā€˜mirrorā€™, which function similarly to magiciansā€™ smoke and mirrors by blocking particular realities from view. In the case of title registries, those realities are particular histories of and relationships with land, which will not be protected by property law and are thus made precarious. Building on interdisciplinary work which theorises time as a social tool, I argue that Torrens title registration produces a temporal order which enables land market coordination by rendering some relationships with land temporary and making others indefeasible. This ordering of relationships with land in turn has consequences for the human subjects who have those relationships, cutting futures short for some and guaranteeing permanence to others. Engaging with Renisa Mawani and other critical race theorists, I argue that the categories produced by Torrens title registration systems materialise as race
    • ā€¦
    corecore