889 research outputs found

    Patterns of delays in diagnosis amongst patients with smear-positive pulmonary tuberculosis at a teaching hospital in Turkey

    Get PDF
    ABSTRACTIn total, 151 newly diagnosed patients with smear-positive pulmonary tuberculosis were studied. The mean time from the onset of symptoms to the first visit to a physician was 46.4 days; the mean referral delay was 28.9 days; the mean delay in diagnosis was 2.4 days; and the mean delay in treatment initiation was 0.8 days. There was a delay in consulting a physician by 49% of patients. A low index of suspicion for tuberculosis on the part of the physician and healthcare system and laboratory delays were the most common reasons for delays in diagnosis

    The EEE Project

    Get PDF
    The new experiment ``Extreme Energy Events'' (EEE) to detect extensive air showers through muon detection is starting in Italy. The use of particle detectors based on Multigap Resistive Plate Chambers (MRPC) will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The installation of many of such 'telescopes' in numerous High Schools scattered all over the Italian territory will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.Comment: 4 pages, 29th ICRC 2005, Pune, Indi

    On-line recognition of supernova neutrino bursts in the LVD detector

    Full text link
    In this paper we show the capabilities of the Large Volume Detector (INFN Gran Sasso National Laboratory) to identify a neutrino burst associated to a supernova explosion, in the absence of an "external trigger", e.g., an optical observation. We describe how the detector trigger and event selection have been optimized for this purpose, and we detail the algorithm used for the on-line burst recognition. The on-line sensitivity of the detector is defined and discussed in terms of supernova distance and electron anti-neutrino intensity at the source.Comment: Accepted for pubblication on Astroparticle Physics. 13 pages, 10 figure

    A Combined Phenotypic-Genotypic Predictive Algorithm for In Vitro Detection of Bicarbonate: β-Lactam Sensitization among Methicillin-Resistant Staphylococcus aureus (MRSA).

    Get PDF
    Antimicrobial susceptibility testing (AST) is routinely used to establish predictive antibiotic resistance metrics to guide the treatment of bacterial pathogens. Recently, a novel phenotype termed "bicarbonate (NaHCO3)-responsiveness" was identified in a relatively high frequency of clinical MRSA strains, wherein isolates demonstrate in vitro "susceptibility" to standard β-lactams (oxacillin [OXA]; cefazolin [CFZ]) in the presence of NaHCO3, and in vivo susceptibility to these β-lactams in experimental endocarditis models. We investigated whether a targeted phenotypic-genotypic screening of MRSA could rule in or rule out NaHCO3 susceptibility upfront. We studied 30 well-characterized clinical MRSA bloodstream isolates, including 15 MIC-susceptible to CFZ and OXA in NaHCO3-supplemented Mueller-Hinton Broth (MHB); and 15 MIC-resistant to both β-lactams in this media. Using a two-tiered strategy, isolates were first screened by standard disk diffusion for susceptibility to a combination of amoxicillin-clavulanate [AMC]. Isolates then underwent genomic sequence typing: MLST (clonal complex [CC]); agr; SCCmec; and mecA promoter and coding region. The combination of AMC disk susceptibility testing plus mecA and spa genotyping was able to predict MRSA strains that were more or less likely to be NaHCO3-responsive in vitro, with a high degree of sensitivity and specificity. Validation of this screening algorithm was performed in six strains from the overall cohort using an ex vivo model of endocarditis. This ex vivo model recapitulated the in vitro predictions of NaHCO3-responsiveness vs. nonresponsiveness above in five of the six strains

    First CNGS events detected by LVD

    Get PDF
    The CERN Neutrino to Gran Sasso (CNGS) project aims to produce a high energy, wide band νμ\nu_{\mu} beam at CERN and send it toward the INFN Gran Sasso National Laboratory (LNGS), 732 km away. Its main goal is the observation of the ντ\nu_{\tau} appearance, through neutrino flavour oscillation. The beam started its operation in August 2006 for about 12 days: a total amount of 7.6 10177.6~10^{17} protons were delivered to the target. The LVD detector, installed in hall A of the LNGS and mainly dedicated to the study of supernova neutrinos, was fully operating during the whole CNGS running time. A total number of 569 events were detected in coincidence with the beam spill time. This is in good agreement with the expected number of events from Montecarlo simulations.Comment: Accepted for publication by the European Physical Journal C ; 7 pages, 11 figure

    Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector

    Full text link
    We present an update of our previous study (astro-ph/0112312) on how ν\nu oscillations affect the signal from a supernova core collapse observed in the LVD detector at LNGS. In this paper we use a recent, more precise determination of the cross section (astro-ph/0302055) to calculate the expected number of inverse beta decay events, we introduce in the simulation also the ν\nu-{\rm Fe} interactions, we include the Earth matter effects and, finally, we study also the inverted mass hierarchy case.Comment: 4 pages, 4 figures, to appear in the Proceedings of ICRC 200

    Search for low energy neutrinos in correlation with the 8 events observed by the EXPLORER and NAUTILUS detectors in 2001

    Get PDF
    We report on a search for low-energy neutrino (antineutrino) bursts in correlation with the 8 time coincident events observed by the gravitational waves detectors EXPLORER and NAUTILUS (GWD) during the year 2001. The search, conducted with the LVD detector (INFN Gran Sasso National Laboratory, Italy), has considered several neutrino reactions, corresponding to different neutrino species, and a wide range of time intervals around the (GWD) observed events. No evidence for statistically significant correlated signals in LVD has been found. Assuming two different origins for neutrino emission, the cooling of a neutron star from a core-collapse supernova or from coalescing neutron stars and the accretion of shocked matter, and taking into account neutrino oscillations, we derive limits to the total energy emitted in neutrinos and to the amount of accreting mass, respectively.Comment: Accepted for publication in Astronomy and Astrophysic

    A simulation tool for MRPC telescopes of the EEE project

    Full text link
    The Extreme Energy Events (EEE) Project is mainly devoted to the study of the secondary cosmic ray radiation by using muon tracker telescopes made of three Multigap Resistive Plate Chambers (MRPC) each. The experiment consists of a telescope network mainly distributed across Italy, hosted in different building structures pertaining to high schools, universities and research centers. Therefore, the possibility to take into account the effects of these structures on collected data is important for the large physics programme of the project. A simulation tool, based on GEANT4 and using GEMC framework, has been implemented to take into account the muon interaction with EEE telescopes and to estimate the effects on data of the structures surrounding the experimental apparata.A dedicated event generator producing realistic muon distributions, detailed geometry and microscopic behavior of MRPCs have been included to produce experimental-like data. The comparison between simulated and experimental data, and the estimation of detector resolutions is here presented and discussed
    corecore