36 research outputs found

    Juvenile recurrent parotitis in a 4-year-old patient: a case report

    Get PDF
    Juvenile recurrent parotitis (JRP) is a rare disease. It is most commonly occurring between the ages of 3 and 5 years, that classically resolves at adolescence. It is characterized by recurrent non-suppurative parotitis, with several acute inflammatory episodes per year. The parotid´s swelling tends to be unilateral, but it can occur bilaterally, with a more predominant side. The aim of this work was to present a case report that highlights signs and symptoms of this unusual condition and to stress on the value of ultrasonography as an aid to diagnosis

    Physiological and structural modifications in snail medic (Medicago scutellata L.) plants exposed to salinity

    Get PDF
    Seeds of snail medic (Medicago scutellata L.) were assessed for their response to salt at the germination and seedling stages. NaCl at concentrations 86 and 170 mM decreased the final germination percentage. Embryonic axis length, water content and dry weight of embryonic axis and cotyledons were also reduced by salt treatment. Furthermore, 28-d-old plants were grown hydroponically with different NaCl concentrations (0, 86 and 170 mM). After 7 days of treatment, growth, water content and development of the different organs of M. scutellata plant were affected especially at the highest NaCl concentration (170 mM). However, NaCl did not affect root length and the number of stem shoots but reduced stem length and total leaf area. Salt treatment increased markedly the concentration of Na+ in leaf and root tissues while reduced that of K+ only in root and stem tissues. Lipid peroxidation revealed the damage of the membranes of roots and leaves. Moreover, showed a more intense suberization and lignification at the cambial zone of roots of M. scutellata, were observed under the effect of NaCl

    Gold octahedra nanoparticles (Au_0.03 and Au_0.045): Synthesis and impact on marine clams Ruditapes decussatus

    Get PDF
    The increased use of gold nanoparticles (AuNPs) in several applications has led to a rise in concerns about their potential toxicity to aquatic organisms. In addition, toxicity of nanoparticles to aquatic organisms is related to their physical and chemical properties. In the present study, we synthesize two forms of gold octahedra nanoparticles (Au_0.03 and Au_0.045) in 1.3-propandiol with polyvinyl-pyrrolidone K30 (PVPK30) as capping agent using polyol process. Shape, size and optical properties of the particles could be tuned by changing the molar ratio of PVP K30 to metal salts. The anisotropy in nanoparticles shape shows strong localized surface plasmon resonance (SPR) in the near infrared region of the electromagnetic spectrum. Environmental impact of Oct-AuNPs was determined in the marine bivalve, Ruditapes decussatus exposed to different concentrations of Au_0.03 and Au_0.045. The dynamic light scattering showed the stability and resistance of Au_0.03 and Au_0.045 in the natural seawater. No significant modification in vg-like proteins, MDA level and enzymatic activities were observed in treated clams with Au_0.03 even at high concentration. In contrast, Au_0.045 induced superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) activities, in a concentration dependent manner indicating defense against oxidative stress. Enhanced lipid peroxidation represented by malondialdehyde content confirmed oxidative stress of Au_0.045 at high concentration. These results highlight the importance of the physical form of nanomaterials on their interactions with marine organisms and provide a useful guideline for future use of Oct-AuNPs. In addition, Vitellogenin is shown not to be an appropriate biomarker for Oct-AuNPs contamination even at high concentration. We further show that Oct-AuNPs exhibit an important antioxidant response without inducing estrogenic disruption

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Spirometric “Lung Age” estimation for North African population

    Get PDF
    Background: Published reference equations predicting Estimated-Lung-Age (ELA) did not reliably predict Chronological-Lung-Age (CLA) data in North African population. Aims: To develop and to validate novel reference equations for ELA from varied anthropometric data and FEV1. Methods: Applying multiple regression analysis, equations predicting ELA were invented using data from 540 never-smokers with normal spirometry (group I). Validation was made based on data from 41 never-smokers with normal spirometry (group II). Equations were further applied for 91 subjects with confirmed COPD. Results: Novel regression equations allowing prediction of reference value of ELA and normal limits of difference between ELA and CLA were elaborated in both sexes. In males, ELA (yrs) = 42.85 − 20.74 × FEV1 (L) + 47.41 × Body Surface Area (m2) − 0.62 × Body-Mass-Index (BMI, kg/m2). In females, ELA (yrs) = 64.64 − 8.00 × FEV1 (L) − 0.17 × BMI (kg/m2) + 8.82 × Height (m). Normal limits of difference between ELA and CLA were ±16.9 yrs in males and ±14.8 yrs in females. Established equations predicted ELA of group II with no significant difference between CLA and ELA in either sex (respectively, 42.9 ± 16.6 vs. 40.3 ± 13.7 yrs in males, 42.0 ± 13.5 vs. 45.6 ± 7.7 yrs in females) ELA was significantly older than CLA age only in COPD with grades III and IV ((ELA minus CLA) (yrs) averaged, respectively, +21.7, +26.4). Conclusion: North African reference equations enrich the World Bank of reference equations from which the physician should choose according to the patient’s ethnic background

    Influence of Weather Conditions on the Onset of Spontaneous Pneumothorax in the Region of Sousse (Tunisia): Analysis of Time Series

    No full text
    Introduction. Weather conditions were implicated in the onset of spontaneous pneumothorax (SP). Aim. Investigate the influence of weather conditions on the onset of SP. Methods. A total of 200 patients with SP in Sousse (Tunisia) were enrolled in the study between January 2010 and December 2014. An analysis of two time series (meteorological data and pneumothorax cases) was performed. Data on weather conditions were collected daily throughout the 5-year period. Results. A comparison of the mean temperature between days with and without SP showed significantly higher temperatures during the days with SP. A decrease of 1% in the relative humidity one day lag (D-1) was associated with an increase in the risk of SP by 1.6% (p=0,02). The occurrence of clusters was associated significantly with higher temperature averages on the same days. This same observation was made regarding the mean duration of sunshine two days before the cluster onset (p = 0.05). The occurrence of storms two days before clusters was also significantly associated with a risk multiplied by 1.96. Conclusion. There was a correlation between clusters of spontaneous pneumothorax and weather conditions in the region of Sousse-Tunisia
    corecore