54 research outputs found
Light-driven processes: key players of the functional biodiversity in microalgae
International audienc
Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial
Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium â„6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D
Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTICâHF: baseline characteristics and comparison with contemporary clinical trials
Aims:
The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTICâHF) trial. Here we describe the baseline characteristics of participants in GALACTICâHF and how these compare with other contemporary trials.
Methods and Results:
Adults with established HFrEF, New York Heart Association functional class (NYHA)ââ„âII, EF â€35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokineticâguided dosing: 25, 37.5 or 50âmg bid). 8256 patients [male (79%), nonâwhite (22%), mean age 65âyears] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NTâproBNP 1971âpg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTICâHF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressureâ<â100âmmHg (n = 1127), estimated glomerular filtration rate <â30âmL/min/1.73 m2 (n = 528), and treated with sacubitrilâvalsartan at baseline (n = 1594).
Conclusions:
GALACTICâHF enrolled a wellâtreated, highârisk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation
Biochemical properties of thioredoxin superfamily proteins catalysing versatile redox reactions
La formation de ponts disulfure constitue une modification post-traductionnelle des protéines importante pour de nombreux processus physiologiques, jouant un rÎle particulier dans le repliement, la catalyse et la régulation de leur activité. Ce travail concerne l'étude des relations structure-fonction d'oxydoréductases de peuplier appartenant à deux familles de la superfamille des thiorédoxines, les glutathion peroxydases (Gpxs) et les protéine disulfure isomérases (PDIs).L'étude biochimique fine de la Gpx5 a permis de montrer que cette peroxydase réduit le peroxynitrite, propriété inconnue pour ce type de Gpx et de détailler plusieurs étapes du mécanisme catalytique (formation de l'acide sulfénique, changement structural entre formes réduites et oxydées, régénération par les Trxs). La dimérisation de la Gpx5 n'est pas requise pour son activité mais pourrait jouer un rÎle dans la reconnaissance de certains substrats. Enfin, l'inactivation de la cystéine peroxydatique par suroxydation suggÚre que les Gpxs pourraient également avoir une fonction dans la signalisation en réponse aux peroxydes.Concernant les PDIs, suite à une analyse phylogénétique détaillée amenant à proposer une nouvelle classification en 9 classes chez les organismes photosynthétiques, la caractérisation biochimique de plusieurs isoformes présentant des organisations modulaires distinctes et appartenant à trois classes de PDIs a été entreprise. Aucune activité enzymatique typique n'a été identifiée pour la PDI-A, alors que les PDI-L1a et -M possÚdent à la fois une activité oxydase et réductase. Les deux modules a de la PDI-M catalysent des réactions spécifiques, de réduction ou d'oxydation.Protein activity and folding can be regulated by post-translational modifications that can impact on their physiological functions. One of these is the formation/reduction of disulfide bridges. The aim of the present work is to study the structure-function relationship of protein members of the thioredoxin superfamily, the protein disulfide isomerases (PDI) and the glutathione peroxidases (Gpx).A precise biochemical study has allowed us to demonstrate that this enzyme is an efficient peroxynitrite scavenger, a new finding for this type of protein and allowed investigating several steps of the Gpx5 catalytic mechanism (i.e. sulfenic acid formation, structural changes between reduce dand oxidized forms, Trx-mediated recycling). We also demonstrate that the dimer form of Gpx5 is not absolutely required for peroxide reduction but probably involved in peroxide specificity. Finally, the capability of the peroxidatic cysteine to be overoxidized brings some new clues in favor of an additional signaling function for Gpx5.Concerning PDIs, a detailed phylogenetic analysis of photosynthetic organisms allowed us to identify 9 classes of PDIs and to propose a new nomenclature that fits all these organisms. The biochemical characterization of isoforms of interest has allowed us to highlight some specificity of PDI-L1a and PDI-M in terms of reduction or oxidation reactions catalyzed. A detailed analysis of PDI-M isoform also indicates that the two Trx modules of this protein show differential oxidation or reduction capacities. We could not detect any activity for PDI-A isoforms, leaving us to wonder whether this enzyme is simply active or possesses highly specific protein partners
Les glutathion peroxydases et protéine disulfure isomérases de peuplier : potentialités du repliement thiorédoxine pour la catalyse des réactions redox
Protein activity and folding can be regulated by post-translational modifications that can impact on their physiological functions. One of these is the formation/reduction of disulfide bridges. The aim of the present work is to study the structure-function relationship of protein members of the thioredoxin superfamily, the protein disulfide isomerases (PDI) and the glutathione peroxidases (Gpx).A precise biochemical study has allowed us to demonstrate that this enzyme is an efficient peroxynitrite scavenger, a new finding for this type of protein and allowed investigating several steps of the Gpx5 catalytic mechanism (i.e. sulfenic acid formation, structural changes between reduce dand oxidized forms, Trx-mediated recycling). We also demonstrate that the dimer form of Gpx5 is not absolutely required for peroxide reduction but probably involved in peroxide specificity. Finally, the capability of the peroxidatic cysteine to be overoxidized brings some new clues in favor of an additional signaling function for Gpx5.Concerning PDIs, a detailed phylogenetic analysis of photosynthetic organisms allowed us to identify 9 classes of PDIs and to propose a new nomenclature that fits all these organisms. The biochemical characterization of isoforms of interest has allowed us to highlight some specificity of PDI-L1a and PDI-M in terms of reduction or oxidation reactions catalyzed. A detailed analysis of PDI-M isoform also indicates that the two Trx modules of this protein show differential oxidation or reduction capacities. We could not detect any activity for PDI-A isoforms, leaving us to wonder whether this enzyme is simply active or possesses highly specific protein partners.La formation de ponts disulfure constitue une modification post-traductionnelle des protéines importante pour de nombreux processus physiologiques, jouant un rÎle particulier dans le repliement, la catalyse et la régulation de leur activité. Ce travail concerne l'étude des relations structure-fonction d'oxydoréductases de peuplier appartenant à deux familles de la superfamille des thiorédoxines, les glutathion peroxydases (Gpxs) et les protéine disulfure isomérases (PDIs).L'étude biochimique fine de la Gpx5 a permis de montrer que cette peroxydase réduit le peroxynitrite, propriété inconnue pour ce type de Gpx et de détailler plusieurs étapes du mécanisme catalytique (formation de l'acide sulfénique, changement structural entre formes réduites et oxydées, régénération par les Trxs). La dimérisation de la Gpx5 n'est pas requise pour son activité mais pourrait jouer un rÎle dans la reconnaissance de certains substrats. Enfin, l'inactivation de la cystéine peroxydatique par suroxydation suggÚre que les Gpxs pourraient également avoir une fonction dans la signalisation en réponse aux peroxydes.Concernant les PDIs, suite à une analyse phylogénétique détaillée amenant à proposer une nouvelle classification en 9 classes chez les organismes photosynthétiques, la caractérisation biochimique de plusieurs isoformes présentant des organisations modulaires distinctes et appartenant à trois classes de PDIs a été entreprise. Aucune activité enzymatique typique n'a été identifiée pour la PDI-A, alors que les PDI-L1a et -M possÚdent à la fois une activité oxydase et réductase. Les deux modules a de la PDI-M catalysent des réactions spécifiques, de réduction ou d'oxydation
Les glutathion peroxydases et protéine disulfure isomérases de peuplier (potentialités du repliement thiorédoxine pour la catalyse des réactions redox)
La formation de ponts disulfure constitue une modification post-traductionnelle des protéines importante pour de nombreux processus physiologiques, jouant un rÎle particulier dans le repliement, la catalyse et la régulation de leur activité. Ce travail concerne l'étude des relations structure-fonction d'oxydoréductases de peuplier appartenant à deux familles de la superfamille des thiorédoxines, les glutathion peroxydases (Gpxs) et les protéine disulfure isomérases (PDIs).L'étude biochimique fine de la Gpx5 a permis de montrer que cette peroxydase réduit le peroxynitrite, propriété inconnue pour ce type de Gpx et de détailler plusieurs étapes du mécanisme catalytique (formation de l'acide sulfénique, changement structural entre formes réduites et oxydées, régénération par les Trxs). La dimérisation de la Gpx5 n'est pas requise pour son activité mais pourrait jouer un rÎle dans la reconnaissance de certains substrats. Enfin, l'inactivation de la cystéine peroxydatique par suroxydation suggÚre que les Gpxs pourraient également avoir une fonction dans la signalisation en réponse aux peroxydes.Concernant les PDIs, suite à une analyse phylogénétique détaillée amenant à proposer une nouvelle classification en 9 classes chez les organismes photosynthétiques, la caractérisation biochimique de plusieurs isoformes présentant des organisations modulaires distinctes et appartenant à trois classes de PDIs a été entreprise. Aucune activité enzymatique typique n'a été identifiée pour la PDI-A, alors que les PDI-L1a et -M possÚdent à la fois une activité oxydase et réductase. Les deux modules a de la PDI-M catalysent des réactions spécifiques, de réduction ou d'oxydation.Protein activity and folding can be regulated by post-translational modifications that can impact on their physiological functions. One of these is the formation/reduction of disulfide bridges. The aim of the present work is to study the structure-function relationship of protein members of the thioredoxin superfamily, the protein disulfide isomerases (PDI) and the glutathione peroxidases (Gpx).A precise biochemical study has allowed us to demonstrate that this enzyme is an efficient peroxynitrite scavenger, a new finding for this type of protein and allowed investigating several steps of the Gpx5 catalytic mechanism (i.e. sulfenic acid formation, structural changes between reduce dand oxidized forms, Trx-mediated recycling). We also demonstrate that the dimer form of Gpx5 is not absolutely required for peroxide reduction but probably involved in peroxide specificity. Finally, the capability of the peroxidatic cysteine to be overoxidized brings some new clues in favor of an additional signaling function for Gpx5.Concerning PDIs, a detailed phylogenetic analysis of photosynthetic organisms allowed us to identify 9 classes of PDIs and to propose a new nomenclature that fits all these organisms. The biochemical characterization of isoforms of interest has allowed us to highlight some specificity of PDI-L1a and PDI-M in terms of reduction or oxidation reactions catalyzed. A detailed analysis of PDI-M isoform also indicates that the two Trx modules of this protein show differential oxidation or reduction capacities. We could not detect any activity for PDI-A isoforms, leaving us to wonder whether this enzyme is simply active or possesses highly specific protein partners.NANCY1-Bib. numérique (543959902) / SudocSudocFranceF
Novel insights into the diversity of the sulfurtransferase family in photosynthetic organisms with emphasis on oak
International audienc
The chloroplastic thiol reducing systems: Dual functions in the regulation of carbohydrate metabolism and regeneration of antioxidant enzymes, emphasis on the poplar redoxin equipment
International audienceThe post-translational modification consisting in the formation/reduction of disulfide bonds has been the subject of intense research in plants since the discovery in the 1970s that many chloroplastic enzymes are regulated by light through dithiolâdisulfide exchange reactions catalyzed by oxidoreductases called thioredoxins (Trxs). Further biochemical and proteomic studies have considerably increased the number of target enzymes and processes regulated by these mechanisms in many sub-cellular compartments. Recently, glutathionylation, a modification consisting in the reversible formation of a glutathione adduct on cysteine residues, was proposed as an alternative redox regulation mechanism. Glutaredoxins (Grxs), proteins related to Trxs, are efficient catalysts for deglutathionylation, the opposite reaction. Hence, the Trxs- and Grxs-dependent pathways might constitute complementary and not only redundant regulatory processes. This article focuses on these two multigenic families and associated protein partners in poplar and on their involvement in the regulation of some major chloroplastic processes such as stress response, carbohydrate and heme/chlorophyll metabolism
Atypical protein disulfide isomerases (PDI) : Comparison of the molecular and catalytic properties of poplar PDI-A and PDI-M with PDI-L1A
Protein disulfide isomerases are overwhelmingly multi-modular redox catalysts able to perform the formation, reduction or isomerisation of disulfide bonds.[br/]
We present here the biochemical characterization of three different poplar PDI isoforms. PDI-A is characterized by a single catalytic Trx module, the so-called a domain, whereas PDI-L1a and PDI-M display an a-b-bâ-aâ and a°-a-b organisation respectively. Their activities have been tested in vitro using purified recombinant proteins and a series of model substrates as insulin, NADPH thioredoxin reductase, NADP malate dehydrogenase (NADP-MDH), peroxiredoxins or RNase A.[br/]
We demonstrated that PDI-A exhibited none of the usually reported activities, although the cysteines of the WCKHC active site signature are able to form a disulfide with a redox midpoint potential of -170 mV at pH 7.0. The fact that it is able to bind a [Fe2S2] cluster upon Escherichia coli expression and anaerobic purification might indicate that it does not have a function in dithiol-disulfide exchange reactions. The two other proteins were able to catalyze oxidation or reduction reactions, PDI-L1a being more efficient in most cases, except that it was unable to activate the non-physiological substrate NADP-MDH, in contrast to PDI-M. To further evaluate the contribution of the catalytic domains of PDI-M, the dicysteinic motifs have been independently mutated in each a domain.[br/]
The results indicated that the two a domains seem interconnected and that the a° module preferentially catalyzed oxidation reactions whereas the a module catalyzed reduction reactions, in line with the respective redox potentials of -170 mV and -190 mV at pH 7.0. Overall, these in vitro results illustrate that the number and position of a and b domains influence the redox properties and substrate recognition (both electron donors and acceptors) of PDI which contributes to understand why this protein family expanded along evolution
- âŠ