625 research outputs found

    A mobile Magnetic Sensor Unit for the KATRIN Main Spectrometer

    Full text link
    The KArlsruhe TRItium Neutrino experiment (KATRIN) aims to measure the electron neutrino mass with an unprecedented sensitivity of 0.2 eV/c2, using b decay electrons from tritium decay. For the control of magnetic field in the main spectrometer area of the KATRIN experiment a mobile magnetic sensor unit is constructed and tested at the KATRIN main spectrometer site. The unit moves on inner rails of the support structures of the low field shaping coils which are arranged along the the main spectrometer. The unit propagates on a caterpillar drive and contains an electro motor, battery pack, board electronics, 2 triaxial flux gate sensors and 2 inclination senors. During operation all relevant data are stored on board and transmitted to the master station after the docking station is reached.Comment: 11 pages, 14 figure

    Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition

    Get PDF
    Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts

    <i>miniPixD</i>: a compact sample analysis system which combines X-ray imaging and diffraction

    Get PDF
    This paper introduces miniPixD: a new, compact system that utilises transmission X-ray imaging and X-ray diffraction (XRD) to locate and identify materials of interest within an otherwise opaque volume. The system and the embodied techniques have utility in security screening, medical diagnostics, non-destructive testing (NDT) and quality assurance (QA). This paper outlines the design of the system including discussion on the choice of components and presents some data from relevant samples which are compared to other energy dispersive and angular dispersive XRD techniques

    Gcn5 and Sirtuins Regulate Acetylation of the Ribosomal Protein Transcription Factor Ifh1

    Get PDF
    SummaryBackgroundIn eukaryotes, ribosome biosynthesis involves the coordination of ribosomal RNA and ribosomal protein (RP) production. In S. cerevisiae, the regulation of ribosome biosynthesis occurs largely at the level of transcription. The transcription factor Ifh1 binds at RP genes and promotes their transcription when growth conditions are favorable. Although Ifh1 recruitment to RP genes has been characterized, little is known about the regulation of promoter-bound Ifh1.ResultsWe used a novel whole-cell-extract screening approach to identify Spt7, a member of the SAGA transcription complex, and the RP transactivator Ifh1 as highly acetylated nonhistone species. We report that Ifh1 is modified by acetylation specifically in an N-terminal domain. These acetylations require the Gcn5 histone acetyltransferase and are reversed by the sirtuin deacetylases Hst1 and Sir2. Ifh1 acetylation is regulated by rapamycin treatment and stress and limits the ability of Ifh1 to act as a transactivator at RP genes.ConclusionsOur data suggest a novel mechanism of regulation whereby Gcn5 functions to titrate the activity of Ifh1 following its recruitment to RP promoters to provide more than an all-or-nothing mode of transcriptional regulation. We provide insights into how the action of histone acetylation machineries converges with nutrient-sensing pathways to regulate important aspects of cell growth

    Optimization of K-edge subtraction imaging using a pixellated spectroscopic detector

    Full text link
    Conventional K-edge subtraction imaging is based around the acquisition of two separate images at energies respectively below and above the K-edge of a contrast agent. This implies increased patient dose with respect to a conventional procedure and potentially incorrect image registration due to patient motion. © 2012 IEEE

    Incomplete Charge Collection at Inter-Pixel Gap in Low-and High-Flux Cadmium Zinc Telluride Pixel Detectors

    Get PDF
    The success of cadmium zinc telluride (CZT) detectors in room-temperature spectroscopic X-ray imaging is now widely accepted. The most common CZT detectors are characterized by enhanced-charge transport properties of electrons, with mobility-lifetime products µeτe &gt; 10−2 cm2/V and µhτh &gt; 10−5 cm2/V. These materials, typically termed low-flux LF-CZT, are successfully used for thick electron-sensing detectors and in low-flux conditions. Recently, new CZT materials with hole mobility-lifetime product enhancements (µhτh &gt; 10−4 cm2/V and µeτe &gt; 10−3 cm2/V) have been fabricated for high-flux measurements (high-flux HF-CZT detectors). In this work, we will present the performance and charge-sharing properties of sub-millimeter CZT pixel detectors based on LF-CZT and HF-CZT crystals. Experimental results from the measurement of energy spectra after charge-sharing addition (CSA) and from 2D X-ray mapping highlight the better charge-collection properties of HF-CZT detectors near the inter-pixel gaps. The successful mitigation of the effects of incomplete charge collection after CSA was also performed through original charge-sharing correction techniques. These activities exist in the framework of international collaboration on the development of energy-resolved X-ray scanners for medical applications and non-destructive testing in the food industry

    Single-shot structural analysis by high-energy X-ray diffraction using an ultrashort all-optical source

    Get PDF
    High-energy X-rays (HEX-rays) with photon energies on order of 100 keV have attractive characteristics, such as comparably low absorption, high spatial resolution and the ability to access inner-shell states of heavy atoms. These properties are advantageous for many applications ranging from studies of bulk materials to the investigation of materials in extreme conditions. Ultrafast X-ray diffraction allows the direct imaging of atomic dynamics simultaneously on its natural time and length scale. However, using HEX-rays for ultrafast studies has been limited due to the lack of sources that can generate pulses of sufficiently short (femtosecond) duration in this wavelength range. Here we show single-crystal diffraction using ultrashort ~90 keV HEX-ray pulses generated by an all-optical source based on inverse Compton scattering. We also demonstrate a method for measuring the crystal lattice spacing in a single shot that contains only ~105 photons in a spectral bandwidth of ~50% full width at half maximum (FWHM). Our approach allows us to obtain structural information from the full X-ray spectrum. As target we use a cylindrically bent Ge crystal in Laue transmission geometry. This experiment constitutes a first step towards measurements of ultrafast atomic dynamics using femtosecond HEX-ray pulses

    Correlation of X-ray diffraction signatures of breast tissue and their histopathological classification

    Get PDF
    This pilot study examines the correlation of X-ray diffraction (XRD) measurements with the histopathological analysis of breast tissue. Eight breast cancer samples were investigated. Each sample contained a mixture of normal and cancerous tissues. In total, 522 separate XRD measurements were made at different locations across the samples (8 in total). The resulting XRD spectra were subjected to principal component analysis (PCA) in order to determine if there were any distinguishing features that could be used to identify different tissue components. 99.0% of the variation between the spectra were described by the first two principal components (PC). Comparing the location of points in PC space with the classification determined by histopathology indicated correlation between the shape/magnitude of the XRD spectra and the tissue type. These results are encouraging and suggest that XRD could be used for the intraoperative or postoperative classification of bulk tissue samples

    Depth resolved snapshot energy-dispersive X-ray diffraction using a conical shell beam

    Get PDF
    We demonstrate a novel imaging architecture to collect range encoded diffraction patterns from overlapping samples in a single conical shell projection. The patterns were measured in the dark area encompassed by the beam via a centrally positioned aperture optically coupled to a pixelated energy-resolving detector. We show that a single exposure measurement of 0.3 mAs enables d-spacing values to be calculated. The axial positions of the samples were not required and the resultant measurements were robust in the presence of crystallographic textures. Our results demonstrate rapid volumetric materials characterization and the potential for a direct imaging method, which is of great relevance to applications in medicine, non-destructive testing and security screening
    • …
    corecore